메뉴 건너뛰기




Volumn , Issue , 2008, Pages 282-286

ART neural network based clustering method produces best quality clusters of in comparison to self organizing map and K-means clustering algorithms

Author keywords

ART1 clustering; Compact clusters; Fingerprint clustering; K Means clustering; Minutiae points; Self organizing map algorithm

Indexed keywords

ART1 CLUSTERING; COMPACT CLUSTERS; FINGERPRINT CLUSTERING; K-MEANS CLUSTERING; MINUTIAE POINTS; SELF ORGANIZING MAP ALGORITHM;

EID: 67649500199     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/INNOVATIONS.2008.4781647     Document Type: Conference Paper
Times cited : (6)

References (12)
  • 1
    • 67649523053 scopus 로고    scopus 로고
    • Fast fingerprint identification system using backpropogational neural network and self orgnizing map
    • R.G.P.V., Bhopal, June
    • Bhupesh Gour, et al., "Fast Fingerprint Identification System using Backpropogational Neural Network and Self Orgnizing Map", in Proceedings of the Glow Gift, International Level Seminar, R.G. P. V., Bhopal, June 2005.
    • (2005) Proceedings of the Glow Gift, International Level Seminar
    • Gour, B.1
  • 3
    • 34250185435 scopus 로고    scopus 로고
    • Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions
    • December 29
    • K. M. Faraoun and A. Boukelif, "Neural Networks Learning Improvement using the K-Means Clustering Algorithm to Detect Network Intrusions", in International Journal of Computational Intelligence, Volume 3 Number 2, pp. 161, December 29, 2005.
    • (2005) International Journal of Computational Intelligence , vol.3 , Issue.2 , pp. 161
    • Faraoun, K.M.1    Boukelif, A.2
  • 4
    • 67649544725 scopus 로고    scopus 로고
    • Texture descriptor visualization through self-organizing maps: A case study in undergraduate research
    • March 13-16, Sao Paulo, Brazil
    • James Wolfer1 and Jacob Ratkiewicz, "Texture Descriptor Visualization Through Self-Organizing Maps: A Case Study In Undergraduate Research", Global Congress on Engineering and Technology Education, March 13-16, 2005, Sao Paulo, Brazil.
    • (2005) Global Congress on Engineering and Technology Education
    • Wolfer I, J.1    Ratkiewicz, J.2
  • 5
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition, machine
    • G. Carpenter, S. Grossberg, "A Massively Parallel Architecture for a Self-Organizing Neural Pattern Recognition, Machine". Computer Vision, Graphics and Image Processing, pp. 54-115, 1987.
    • (1987) Computer Vision, Graphics and Image Processing , pp. 54-115
    • Carpenter, G.1    Grossberg, S.2
  • 7
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley, University of California Press
    • J. B. MacQueen, "Some Methods for classification and Analysis of Multivariate Observations", Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1:281-297, 1987.
    • (1987) Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 8
    • 67649535572 scopus 로고    scopus 로고
    • An efficient K-means clustering algorithm
    • Hitachi America
    • Khalid Alsabti, Sanjay Ranks et al., "An Efficient K-Means Clustering Algorithm", Information Technology Lab (ITL), Hitachi America, 1998.
    • (1998) Information Technology Lab (ITL)
    • Alsabti, K.1    Ranks, S.2
  • 9
  • 11
    • 0002954208 scopus 로고    scopus 로고
    • Adaptive resonance theory
    • Department of Cognitive and Neural Systems Boston University, Boston, USA September
    • Michael A. Arbib, "Adaptive Resonance Theory", The Handbook of Brain Theory and Neural Networks, Second Edition, Department of Cognitive and Neural Systems Boston University, Boston, USA September, 1998.
    • (1998) The Handbook of Brain Theory and Neural Networks, Second Edition
    • Arbib, M.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.