메뉴 건너뛰기




Volumn 28, Issue , 2012, Pages 90-105

A life-long learning vector quantization approach for interactive learning of multiple categories

Author keywords

Category learning; Feature selection; Life long learning; Vector quantization

Indexed keywords

CATEGORY LEARNING; COGNITIVE ROBOTICS; FEATURE SELECTION METHODS; INCREMENTAL LEARNING; INTERACTIVE LEARNING; LEARNING PROCESS; LEARNING VECTOR QUANTIZATION; LIFE LONG LEARNING; REPRESENTATION SPACE; STABILITY-PLASTICITY DILEMMA; VISUAL CATEGORIZATION;

EID: 84857797119     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.12.003     Document Type: Article
Times cited : (39)

References (53)
  • 3
    • 3042970149 scopus 로고
    • Lifelong education: the institutionalisation of an illiberal and regressive ideology?
    • Bagnall R.G. Lifelong education: the institutionalisation of an illiberal and regressive ideology?. Educational Philosophy and Theory 1990, 22(1):1-7.
    • (1990) Educational Philosophy and Theory , vol.22 , Issue.1 , pp. 1-7
    • Bagnall, R.G.1
  • 5
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps
    • Carpenter G.A., Grossberg S., Markuzon N., Reynolds J.H., Rosen D.B. Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transaction on Neural Networks 1992, 3(5):698-712.
    • (1992) IEEE Transaction on Neural Networks , vol.3 , Issue.5 , pp. 698-712
    • Carpenter, G.A.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.H.4    Rosen, D.B.5
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Machine Learning 1995, 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories
    • Fei-Fei L., Fergus R., Perona P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Computer Vission and Image Understanding 2007, 106(1):59-70.
    • (2007) Computer Vission and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 10
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research 2003, 3:1289-1305.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 11
    • 0032923221 scopus 로고    scopus 로고
    • Catastrophic forgetting in connectionist networks
    • French R.M. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences 1999, 3(4):128-135.
    • (1999) Trends in Cognitive Sciences , vol.3 , Issue.4 , pp. 128-135
    • French, R.M.1
  • 12
    • 84857797609 scopus 로고    scopus 로고
    • Modeling, representation and learning of visual categories
    • Ph.D. thesis. Technical University of Darmstadt.
    • Fritz, M. (2008). Modeling, representation and learning of visual categories. Ph.D. thesis. Technical University of Darmstadt.
    • (2008)
    • Fritz, M.1
  • 15
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • Cambridge MA, MIT Press, G. Tesauro, D.S. Touretzky, T.K. Leen (Eds.)
    • Fritzke B. A growing neural gas network learns topologies. Advances in neural information processing systems: Vol. 7 1995, 625-632. Cambridge MA, MIT Press. G. Tesauro, D.S. Touretzky, T.K. Leen (Eds.).
    • (1995) Advances in neural information processing systems: Vol. 7 , pp. 625-632
    • Fritzke, B.1
  • 16
    • 30644459258 scopus 로고    scopus 로고
    • An incremental network for on-line unsupervised classification and topology learning
    • Furao S., Hasegawa O. An incremental network for on-line unsupervised classification and topology learning. Neural Networks 2006, 1(19):90-106.
    • (2006) Neural Networks , vol.1 , Issue.19 , pp. 90-106
    • Furao, S.1    Hasegawa, O.2
  • 17
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 19
    • 0035008798 scopus 로고    scopus 로고
    • Life-long learning cell structures-continously learning without catastrophic interference
    • Hamker F.H. Life-long learning cell structures-continously learning without catastrophic interference. Neural Networks 2001, 14:551-573.
    • (2001) Neural Networks , vol.14 , pp. 551-573
    • Hamker, F.H.1
  • 20
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B., Villmann T. Generalized relevance learning vector quantization. Neural Networks 2002, 15(8-9):1059-1068.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 25
    • 56449127256 scopus 로고    scopus 로고
    • Incremental GRLVQ: learning relevant features for 3D object recognition
    • Kietzmann T.C., Lange S., Riedmiller M. Incremental GRLVQ: learning relevant features for 3D object recognition. Neurocomputing 2008, 71(13-15):2868-2879.
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 2868-2879
    • Kietzmann, T.C.1    Lange, S.2    Riedmiller, M.3
  • 27
    • 70949105746 scopus 로고    scopus 로고
    • A vision architecture for unconstrained and incremental learning of multiple categories
    • Kirstein S., Denecke A., Hasler S., Wersing H., Gross H.-M., Körner E. A vision architecture for unconstrained and incremental learning of multiple categories. Memetic Computing 2009, 1(4):291-304.
    • (2009) Memetic Computing , vol.1 , Issue.4 , pp. 291-304
    • Kirstein, S.1    Denecke, A.2    Hasler, S.3    Wersing, H.4    Gross, H.-M.5    Körner, E.6
  • 29
    • 39649088014 scopus 로고    scopus 로고
    • A biologically motivated visual memory architecture for online learning of objects
    • Kirstein S., Wersing H., Körner E. A biologically motivated visual memory architecture for online learning of objects. Neural Networks 2008, 21:65-77.
    • (2008) Neural Networks , vol.21 , pp. 65-77
    • Kirstein, S.1    Wersing, H.2    Körner, E.3
  • 30
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artificial Intelligence 1997, 97:273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 33
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe D.G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2004, 60(2):91-110.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 34
    • 67949123173 scopus 로고    scopus 로고
    • Soft double max min over: perceptron-like training of support vector machines
    • Martinetz T., Labusch K., Schneegaß D. Soft double max min over: perceptron-like training of support vector machines. IEEE Transactions on Neural Networks 2009, 20(7):1061-1072.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.7 , pp. 1061-1072
    • Martinetz, T.1    Labusch, K.2    Schneegaß, D.3
  • 35
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: the sequential learning problem
    • McCloskey M., Cohen N. Catastrophic interference in connectionist networks: the sequential learning problem. Psychology of Learning and Motivation 1989, 24:109-164.
    • (1989) Psychology of Learning and Motivation , vol.24 , pp. 109-164
    • McCloskey, M.1    Cohen, N.2
  • 37
    • 0041875229 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes
    • Ng, A. Y., & Jordan, M. I. (2001). On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In Proc. advances in neural information processing systems (pp. 849-856).
    • (2001) In Proc. advances in neural information processing systems , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2
  • 39
    • 27744441220 scopus 로고    scopus 로고
    • Incremental learning of feature space and classifier for face recognition
    • Ozawa S., Toh S.L., Abe S., Pang S., Kasabov N. Incremental learning of feature space and classifier for face recognition. Neural Networks 2005, 18(5-6):575-584.
    • (2005) Neural Networks , vol.18 , Issue.5-6 , pp. 575-584
    • Ozawa, S.1    Toh, S.L.2    Abe, S.3    Pang, S.4    Kasabov, N.5
  • 40
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: fast, incremental feature selection by gradient descent in function space
    • Perkins S., Lacker K., Theiler J. Grafting: fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research 2003, 3:1333-1356.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3
  • 43
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Machine Learning 1990, 5(2):197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 46
    • 35048898173 scopus 로고    scopus 로고
    • AIBO's first words. The social learning of language and meaning
    • Steels L., Kaplan F. AIBO's first words. The social learning of language and meaning. Evolution of Communication 2001, 4(1):3-32.
    • (2001) Evolution of Communication , vol.4 , Issue.1 , pp. 3-32
    • Steels, L.1    Kaplan, F.2
  • 51
    • 0038159929 scopus 로고    scopus 로고
    • Learning optimized features for hierarchical models of invariant object recognition
    • Wersing H., Körner E. Learning optimized features for hierarchical models of invariant object recognition. Neural Computation 2003, 15(7):1559-1588.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1559-1588
    • Wersing, H.1    Körner, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.