메뉴 건너뛰기




Volumn , Issue , 2011, Pages 904-913

LPTA: A probabilistic model for latent periodic topic analysis

Author keywords

Periodic topics; Topic modeling

Indexed keywords

COHERENT SEMANTICS; DATA SETS; FACEBOOK; FINANCIAL REPORTS; NEWS ARTICLES; PERIODIC PATTERN; PERIODIC TOPICS; PROBABILISTIC MODELS; SOCIAL MEDIA; TIME SERIES DATABASE; TOPIC ANALYSIS; TV PROGRAMS;

EID: 84857169805     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2011.96     Document Type: Conference Paper
Times cited : (20)

References (32)
  • 1
    • 0032283421 scopus 로고    scopus 로고
    • On-line new event detection and tracking
    • J. Allan, R. Papka, and V. Lavrenko. On-line new event detection and tracking. In SIGIR, pages 37-45, 1998.
    • (1998) SIGIR , pp. 37-45
    • Allan, J.1    Papka, R.2    Lavrenko, V.3
  • 2
    • 77950913131 scopus 로고    scopus 로고
    • Learning similarity metrics for event identification in social media
    • H. Becker, M. Naaman, and L. Gravano. Learning similarity metrics for event identification in social media. In WSDM, pages 291-300, 2010.
    • (2010) WSDM , pp. 291-300
    • Becker, H.1    Naaman, M.2    Gravano, L.3
  • 3
    • 33749242628 scopus 로고    scopus 로고
    • Dynamic topic models
    • D. M. Blei and J. D. Lafferty. Dynamic topic models. In ICML, pages 113-120, 2006.
    • (2006) ICML , pp. 113-120
    • Blei, D.M.1    Lafferty, J.D.2
  • 5
    • 70349247055 scopus 로고    scopus 로고
    • Modeling hidden topics on document manifold
    • D. Cai, Q. Mei, J. Han, and C. Zhai. Modeling hidden topics on document manifold. In CIKM, pages 911-920, 2008.
    • (2008) CIKM , pp. 911-920
    • Cai, D.1    Mei, Q.2    Han, J.3    Zhai, C.4
  • 6
    • 74549115891 scopus 로고    scopus 로고
    • Event detection from flickr data through wavelet-based spatial analysis
    • L. Chen and A. Roy. Event detection from flickr data through wavelet-based spatial analysis. In CIKM, pages 523-532, 2009.
    • (2009) CIKM , pp. 523-532
    • Chen, L.1    Roy, A.2
  • 8
    • 36849000332 scopus 로고    scopus 로고
    • Time-dependent event hierarchy construction
    • G. P. C. Fung, J. X. Yu, H. Liu, and P. S. Yu. Time-dependent event hierarchy construction. In KDD, pages 300-309, 2007.
    • (2007) KDD , pp. 300-309
    • Fung, G.P.C.1    Yu, J.X.2    Liu, H.3    Yu, P.S.4
  • 9
    • 0032627945 scopus 로고    scopus 로고
    • Efficient mining of partial periodic patterns in time series database
    • J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database. In ICDE, pages 106-115, 1999.
    • (1999) ICDE , pp. 106-115
    • Han, J.1    Dong, G.2    Yin, Y.3
  • 10
    • 77956211453 scopus 로고    scopus 로고
    • Topic dynamics: An alternative model of bursts in streams of topics
    • D. He and D. S. Parker. Topic dynamics: an alternative model of bursts in streams of topics. In KDD, pages 443-452, 2010.
    • (2010) KDD , pp. 443-452
    • He, D.1    Parker, D.S.2
  • 11
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50-57, 1999.
    • (1999) SIGIR , pp. 50-57
    • Hofmann, T.1
  • 12
    • 77956208732 scopus 로고    scopus 로고
    • Online multiscale dynamic topic models
    • T. Iwata, T. Yamada, Y. Sakurai, and N. Ueda. Online multiscale dynamic topic models. In KDD, pages 663-672, 2010.
    • (2010) KDD , pp. 663-672
    • Iwata, T.1    Yamada, T.2    Sakurai, Y.3    Ueda, N.4
  • 13
    • 0242540464 scopus 로고    scopus 로고
    • Bursty and hierarchical structure in streams
    • J. M. Kleinberg. Bursty and hierarchical structure in streams. In KDD, pages 91-101, 2002.
    • (2002) KDD , pp. 91-101
    • Kleinberg, J.M.1
  • 14
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistic Quarterly, 2:83-97, 1955.
    • (1955) Naval Research Logistic Quarterly , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 15
    • 67049116488 scopus 로고    scopus 로고
    • Mining periodic behavior in dynamic social networks
    • M. Lahiri and T. Y. Berger-Wolf. Mining periodic behavior in dynamic social networks. In ICDM, pages 373-382, 2008.
    • (2008) ICDM , pp. 373-382
    • Lahiri, M.1    Berger-Wolf, Y.T.2
  • 16
    • 77956670237 scopus 로고    scopus 로고
    • Periodic subgraph mining in dynamic networks
    • M. Lahiri and T. Y. Berger-Wolf. Periodic subgraph mining in dynamic networks. Knowl. Inf. Syst., 24(3):467-497, 2010.
    • (2010) Knowl. Inf. Syst. , vol.24 , Issue.3 , pp. 467-497
    • Lahiri, M.1    Berger-Wolf, T.Y.2
  • 17
    • 71049177089 scopus 로고    scopus 로고
    • Memetracking and the dynamics of the news cycle
    • J. Leskovec, L. Backstrom, and J. M. Kleinberg. Memetracking and the dynamics of the news cycle. In KDD, pages 497-506, 2009.
    • (2009) KDD , pp. 497-506
    • Leskovec, J.1    Backstrom, L.2    Kleinberg, J.M.3
  • 18
    • 77956216586 scopus 로고    scopus 로고
    • Mining periodic behaviors for moving objects
    • Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving objects. In KDD, pages 1099-1108, 2010.
    • (2010) KDD , pp. 1099-1108
    • Li, Z.1    Ding, B.2    Han, J.3    Kays, R.4    Nye, P.5
  • 19
    • 84885589518 scopus 로고    scopus 로고
    • A probabilistic model for retrospective news event detection
    • Z. Li, B. Wang, M. Li, and W.-Y. Ma. A probabilistic model for retrospective news event detection. In SIGIR, pages 106-113, 2005.
    • (2005) SIGIR , pp. 106-113
    • Li, Z.1    Wang, B.2    Li, M.3    Ma, W.-Y.4
  • 20
    • 85075390249 scopus 로고
    • Discovering frequent episodes in sequences
    • H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes in sequences. In KDD, pages 210-215, 1995.
    • (1995) KDD , pp. 210-215
    • Mannila, H.1    Toivonen, H.2    Verkamo, A.I.3
  • 21
    • 67649878830 scopus 로고    scopus 로고
    • A probabilistic approach to spatiotemporal theme pattern mining on weblogs
    • Q. Mei, C. Liu, H. Su, and C. Zhai. A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In WWW, pages 533-542, 2006.
    • (2006) WWW , pp. 533-542
    • Mei, Q.1    Liu, C.2    Su, H.3    Zhai, C.4
  • 22
    • 78651321224 scopus 로고    scopus 로고
    • Detecting periodic changes in search intentions in a search engine
    • M. Murata, H. Toda, Y. Matsuura, R. Kataoka, and T. Mochizuki. Detecting periodic changes in search intentions in a search engine. In CIKM, pages 1525-1528, 2010.
    • (2010) CIKM , pp. 1525-1528
    • Murata, M.1    Toda, H.2    Matsuura, Y.3    Kataoka, R.4    Mochizuki, T.5
  • 23
    • 77954571408 scopus 로고    scopus 로고
    • Earthquake shakes twitter users: Real-time event detection by social sensors
    • T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-time event detection by social sensors. In WWW, pages 851-860, 2010.
    • (2010) WWW , pp. 851-860
    • Sakaki, T.1    Okazaki, M.2    Matsuo, Y.3
  • 24
    • 70349207275 scopus 로고    scopus 로고
    • Periodic event detection and recognition in video
    • E. P. Vivek, E. Pogalin, and A. W. M. Smeulders. Periodic event detection and recognition in video. In ICASSP, pages 3537-3540, 2009.
    • (2009) ICASSP , pp. 3537-3540
    • Vivek, E.P.1    Pogalin, E.2    Smeulders, A.W.M.3
  • 25
    • 3142717571 scopus 로고    scopus 로고
    • Identifying similarities, periodicities and bursts for online search queries
    • M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying similarities, periodicities and bursts for online search queries. In SIGMOD Conference, pages 131-142, 2004.
    • (2004) SIGMOD Conference , pp. 131-142
    • Vlachos, M.1    Meek, C.2    Vagena, Z.3    Gunopulos, D.4
  • 26
    • 84880119943 scopus 로고    scopus 로고
    • On periodicity detection and structural periodic similarity
    • M. Vlachos, P. S. Yu, and V. Castelli. On periodicity detection and structural periodic similarity. In SDM, 2005.
    • (2005) SDM
    • Vlachos, M.1    Yu, P.S.2    Castelli, V.3
  • 27
    • 33749565782 scopus 로고    scopus 로고
    • Topics over time: A non-markov continuous-time model of topical trends
    • X. Wang and A. McCallum. Topics over time: a non-markov continuous-time model of topical trends. In KDD, pages 424-433, 2006.
    • (2006) KDD , pp. 424-433
    • Wang, X.1    McCallum, A.2
  • 28
    • 36849036336 scopus 로고    scopus 로고
    • Mining correlated bursty topic patterns from coordinated text streams
    • X. Wang, C. Zhai, X. Hu, and R. Sproat. Mining correlated bursty topic patterns from coordinated text streams. In KDD, pages 784-793, 2007.
    • (2007) KDD , pp. 784-793
    • Wang, X.1    Zhai, C.2    Hu, X.3    Sproat, R.4
  • 29
    • 79952376390 scopus 로고    scopus 로고
    • Patterns of temporal variation in online media
    • J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM, pages 177-186, 2011.
    • (2011) WSDM , pp. 177-186
    • Yang, J.1    Leskovec, J.2
  • 30
    • 0037619023 scopus 로고    scopus 로고
    • Mining asynchronous periodic patterns in time series data
    • J. Yang, W. Wang, and P. S. Yu. Mining asynchronous periodic patterns in time series data. IEEE Trans. Knowl. Data Eng., 15(3):613-628, 2003.
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , Issue.3 , pp. 613-628
    • Yang, J.1    Wang, W.2    Yu, P.S.3
  • 31
    • 3543082150 scopus 로고    scopus 로고
    • Mining surprising periodic patterns
    • J. Yang, W. Wang, and P. S. Yu. Mining surprising periodic patterns. Data Min. Knowl. Discov., 9(2):189-216, 2004.
    • (2004) Data Min. Knowl. Discov. , vol.9 , Issue.2 , pp. 189-216
    • Yang, J.1    Wang, W.2    Yu, P.S.3
  • 32
    • 77956211804 scopus 로고    scopus 로고
    • Evolutionary hierarchical dirichlet processes for multiple correlated timevarying corpora
    • J. Zhang, Y. Song, C. Zhang, and S. Liu. Evolutionary hierarchical dirichlet processes for multiple correlated timevarying corpora. In KDD, pages 1079-1088, 2010.
    • (2010) KDD , pp. 1079-1088
    • Zhang, J.1    Song, Y.2    Zhang, C.3    Liu, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.