-
1
-
-
66649100757
-
Selecting global climate models for regional climate change studies
-
10621
-
D. W. Piercea, T. P. Barnetta, B. D. Santer, and P. J. Glecklerb, "Selecting global climate models for regional climate change studies," Proceedings of the National Academy of Sciences, USA, vol. 10621, pp. 8441-8446, 2009.
-
(2009)
Proceedings of the National Academy of Sciences, USA
, pp. 8441-8446
-
-
Piercea, D.W.1
Barnetta, T.P.2
Santer, B.D.3
Glecklerb, P.J.4
-
2
-
-
36248935578
-
Discovery of teleconnections using data mining technologies in global climate datasets
-
F. Lin, X. Jin, C. Hu, X. Gao, K. Xie, and X. Lei, "Discovery of teleconnections using data mining technologies in global climate datasets," Data Science Journal, vol. 6, pp. S749-S755, 2007.
-
(2007)
Data Science Journal
, vol.6
-
-
Lin, F.1
Jin, X.2
Hu, C.3
Gao, X.4
Xie, K.5
Lei, X.6
-
3
-
-
80052257360
-
Community structure and dynamics in climate networks
-
(Online First) DOI: 10.1007/s00382-010-0874-3
-
A. Tsonis, G. Wang, K. Swanson, F. Rodrigues, and L. Costa, "Community structure and dynamics in climate networks," Climate Dynamics, 2010 (Online First) DOI: 10.1007/s00382-010-0874-3.
-
(2010)
Climate Dynamics
-
-
Tsonis, A.1
Wang, G.2
Swanson, K.3
Rodrigues, F.4
Costa, L.5
-
5
-
-
33744532136
-
What do networks have to do with climate?
-
A. Tsonis, K. Swanson, and P. Roebber, "What do networks have to do with climate?" Bulletin of the American Meteorological Society, vol. 875, pp. 585-595, 2006.
-
(2006)
Bulletin of the American Meteorological Society
, vol.875
, pp. 585-595
-
-
Tsonis, A.1
Swanson, K.2
Roebber, P.3
-
7
-
-
29144439194
-
Decoding by linear programming
-
Dec.
-
E. Candes and T. Tao, "Decoding by linear programming," IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.12
, pp. 4203-4215
-
-
Candes, E.1
Tao, T.2
-
8
-
-
47049127967
-
Sparse kernel methods for high-dimensional survival data
-
L. Evers and C. Messow, "Sparse kernel methods for high-dimensional survival data," Bioinformatics, vol. 24, no. 14, pp. 1632-1638, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.14
, pp. 1632-1638
-
-
Evers, L.1
Messow, C.2
-
9
-
-
77952717202
-
Sparse representation for computer vision and pattern recognition
-
J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and S. Yan, "Sparse representation for computer vision and pattern recognition," Proc. IEE, vol. 98, no. 6, pp. 1031-1044, 2010.
-
(2010)
Proc. IEE
, vol.98
, Issue.6
, pp. 1031-1044
-
-
Wright, J.1
Ma, Y.2
Mairal, J.3
Sapiro, G.4
Huang, T.5
Yan, S.6
-
10
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal. Statist. Soc. B, vol. 58, pp. 267-288, 1996.
-
(1996)
J. Royal. Statist. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
11
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," Annals of Statistics, vol. 32, pp. 407-499, 2004.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
12
-
-
33845263263
-
On model selection consistency of lasso
-
Nov
-
P. Zhao and B. Yu, "On model selection consistency of lasso," Journal of Machine Learning Research, vol. 7, pp. 2541-2563, Nov 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
13
-
-
77956506018
-
Proximal methods for sparse hierarchical dictionary learning
-
June
-
R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, "Proximal methods for sparse hierarchical dictionary learning," in Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 2010, pp. 487-494.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning (ICML-10)
, pp. 487-494
-
-
Jenatton, R.1
Mairal, J.2
Obozinski, G.3
Bach, F.4
-
15
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
F. Bach, "Consistency of the group lasso and multiple kernel learning," Journal of Machine Learniing Research, vol. 9, pp. 1179-1225, 2008.
-
(2008)
Journal of Machine Learniing Research
, vol.9
, pp. 1179-1225
-
-
Bach, F.1
-
16
-
-
80055054202
-
-
University of California, Berkeley, Tech. Rep. 797, October
-
S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu., "A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers," University of California, Berkeley, Tech. Rep. 797, October 2010.
-
(2010)
A Unified Framework for High-dimensional Analysis of M-estimators with Decomposable Regularizers
-
-
Negahban, S.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
-
17
-
-
79961177418
-
Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science
-
K. Steinhaeuser, N. V. Chawla, and A. R. Ganguly, "Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science," Statistical Analysis and Data Mining, vol. 4, no. 5, pp. 497-511, 2011.
-
(2011)
Statistical Analysis and Data Mining
, vol.4
, Issue.5
, pp. 497-511
-
-
Steinhaeuser, K.1
Chawla, N.V.2
Ganguly, A.R.3
-
18
-
-
0003684449
-
-
Springer Verlag, New York
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning; Data mining, Inference and Prediction. Springer Verlag, New York, 2001.
-
(2001)
The Elements of Statistical Learning; Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
19
-
-
85161968806
-
Moreau-yosida regularization for grouped tree structure learning
-
J. Lafferty, rfvn1 C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds.
-
J. Liu and J. Ye, "Moreau-yosida regularization for grouped tree structure learning," in Advances in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., 2010, pp. 1459-1467.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 1459-1467
-
-
Liu, J.1
Ye, J.2
|