메뉴 건너뛰기




Volumn 36, Issue 6, 2012, Pages 2649-2657

Performance evaluation of artificial neural network approaches in forecasting reservoir inflow

Author keywords

Inflow; Multilayer perceptron (MLP); Reservoir operation; Time Lagged Recurrent Network (TLRN)

Indexed keywords

APPROPRIATE MODELS; ARTIFICIAL NEURAL NETWORK APPROACH; BACK PROPAGATION NEURAL NETWORKS; FORECASTING RESERVOIR INFLOW; HIDDEN LAYERS; INFLOW; INPUT LAYERS; MEMORY STRUCTURE; MULTILAYER PERCEPTRON (MLP); OUTPUT LAYER; PERFORMANCE EVALUATION; RESERVOIR OPERATION; SHORT TERM MEMORY; TIME LAG; TIME LAGGED RECURRENT NETWORK; TIME VARYING;

EID: 84857031351     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2011.09.048     Document Type: Article
Times cited : (83)

References (35)
  • 1
    • 0030619326 scopus 로고    scopus 로고
    • Streamflow simulation: A nonparametric approach
    • Sharma A., Tarboton D.G., Lall U. Streamflow simulation: A nonparametric approach. Water Resour. Res. 1997, 33(2):291-308.
    • (1997) Water Resour. Res. , vol.33 , Issue.2 , pp. 291-308
    • Sharma, A.1    Tarboton, D.G.2    Lall, U.3
  • 2
    • 0032407455 scopus 로고    scopus 로고
    • Modeling seasonal flow variability of European rivers
    • Abrahamsson O., Hakanson L. Modeling seasonal flow variability of European rivers. Ecol. Model. 1998, 114:49-58.
    • (1998) Ecol. Model. , vol.114 , pp. 49-58
    • Abrahamsson, O.1    Hakanson, L.2
  • 3
    • 84944839206 scopus 로고
    • Streamflow similation: I. a new look at Markovian models fractional Gaussian noise and crossing theory.
    • Iturbe I.R., Mejia J.M., Dawdy D.R. Streamflow similation: I. a new look at Markovian models fractional Gaussian noise and crossing theory. Water Resour. Res. 1972, 8(4):921-930.
    • (1972) Water Resour. Res. , vol.8 , Issue.4 , pp. 921-930
    • Iturbe, I.R.1    Mejia, J.M.2    Dawdy, D.R.3
  • 5
    • 0040080002 scopus 로고    scopus 로고
    • Nonlinear modeling of periodic threshold auto regressions using TSMARS
    • Lewis P.A.W., Ray B.K. Nonlinear modeling of periodic threshold auto regressions using TSMARS. J. Time Ser. Anal. 2002, 23(4):459-471.
    • (2002) J. Time Ser. Anal. , vol.23 , Issue.4 , pp. 459-471
    • Lewis, P.A.W.1    Ray, B.K.2
  • 6
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson C.W., Wilby R.L. Hydrological modeling using artificial neural networks. Prog. Phys. Geog. 2001, 25:80-108.
    • (2001) Prog. Phys. Geog. , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 7
    • 0037005708 scopus 로고    scopus 로고
    • Estimation of missing streamflow data using principles of chaos theory
    • Elshorbagy A., Simonovic S.P., Panu U.S. Estimation of missing streamflow data using principles of chaos theory. J. Hydrol. 2002, 255:123-133.
    • (2002) J. Hydrol. , vol.255 , pp. 123-133
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 8
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • Anctil F., Perin C., Andreassian V. Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environ. Model. Softw. 2004, 19:357-368.
    • (2004) Environ. Model. Softw. , vol.19 , pp. 357-368
    • Anctil, F.1    Perin, C.2    Andreassian, V.3
  • 9
    • 63649137913 scopus 로고    scopus 로고
    • Modeling rainfall-runoff relation using different artificial neural network methods
    • Alp M., Cigizoglu H.K. Modeling rainfall-runoff relation using different artificial neural network methods. Turkish J. İTU. 2004, 3:80-88.
    • (2004) Turkish J. İTU. , vol.3 , pp. 80-88
    • Alp, M.1    Cigizoglu, H.K.2
  • 10
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydro meteorological data
    • Alp M., Cigizoglu H.K. Suspended sediment load simulation by two artificial neural network methods using hydro meteorological data. Environ. Model. Softw. 2007, 22:2-13.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 11
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by two back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu H.K., Kisi O. Flow prediction by two back propagation techniques using k-fold partitioning of neural network training data. J. Nord. Hydrol. 2005, 36:1-16.
    • (2005) J. Nord. Hydrol. , vol.36 , pp. 1-16
    • Cigizoglu, H.K.1    Kisi, O.2
  • 12
    • 84856608560 scopus 로고    scopus 로고
    • Artificial intelligence techniques for river flow forecasting in the Seyhan river catchment
    • Firat M. Artificial intelligence techniques for river flow forecasting in the Seyhan river catchment. Turkey. Hydrol. Earth Syst. Sci. Discuss 2007, 4:1369-1406.
    • (2007) Turkey. Hydrol. Earth Syst. Sci. Discuss , vol.4 , pp. 1369-1406
    • Firat, M.1
  • 13
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event-based rainfall-runoff modeling techniques-deterministic statistical and artificial neural networks
    • Jain A., Indurthy S.K.V.P. Comparative analysis of event-based rainfall-runoff modeling techniques-deterministic statistical and artificial neural networks. J. Hydrol. Eng. 2003, 8:93-98.
    • (2003) J. Hydrol. Eng. , vol.8 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 14
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain S.K., Das D., Srivastava DK. Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manage. 1999, 125:263-271.
    • (1999) J. Water Resour. Plan. Manage. , vol.125 , pp. 263-271
    • Jain, S.K.1    Das, D.2    Srivastava, D.K.3
  • 15
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using ANNs
    • Jain S.K. Development of integrated sediment rating curves using ANNs. J. Hydraul. Eng. 2001, 127:30-37.
    • (2001) J. Hydraul. Eng. , vol.127 , pp. 30-37
    • Jain, S.K.1
  • 16
    • 0036171294 scopus 로고    scopus 로고
    • Suspended sediment estimation and forecasting using artificial neural networks
    • Cigizoglu H.K. Suspended sediment estimation and forecasting using artificial neural networks. Turkish J. Eng. Environ. Sci. 2002, 26:15-25.
    • (2002) Turkish J. Eng. Environ. Sci. , vol.26 , pp. 15-25
    • Cigizoglu, H.K.1
  • 17
    • 0036171309 scopus 로고    scopus 로고
    • Suspended sediment estimation for rivers using artificial neural networks and sediment rating curves
    • Cigizoglu H.K. Suspended sediment estimation for rivers using artificial neural networks and sediment rating curves. Turkish J. Eng. Environ. Sci. 2002, 26:27-36.
    • (2002) Turkish J. Eng. Environ. Sci. , vol.26 , pp. 27-36
    • Cigizoglu, H.K.1
  • 18
    • 37549038684 scopus 로고    scopus 로고
    • Neural networks to simulate regional ground water levels affected by human activities
    • Feng S., Kang S., Huo Z., Chen S., Mao X. Neural networks to simulate regional ground water levels affected by human activities. Ground Water 2008, 46:80-90.
    • (2008) Ground Water , vol.46 , pp. 80-90
    • Feng, S.1    Kang, S.2    Huo, Z.3    Chen, S.4    Mao, X.5
  • 19
    • 2342456466 scopus 로고    scopus 로고
    • Simulation of nitrate distribution under drip irrigation using artificial neural networks
    • Li J., Yoder R.E., Odhiambo L.O., Zhang J. Simulation of nitrate distribution under drip irrigation using artificial neural networks. Irrig. Sci. 2004, 2:29-37.
    • (2004) Irrig. Sci. , vol.2 , pp. 29-37
    • Li, J.1    Yoder, R.E.2    Odhiambo, L.O.3    Zhang, J.4
  • 20
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. River flow modeling using artificial neural networks. J. Hydrol. Eng. 2004, 9:60-63.
    • (2004) J. Hydrol. Eng. , vol.9 , pp. 60-63
    • Kisi, O.1
  • 21
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modeling from climatic data using a neural computing technique
    • Kisi O. Evapotranspiration modeling from climatic data using a neural computing technique. Hydrol. Proc. 2007, 21:1925-1934.
    • (2007) Hydrol. Proc. , vol.21 , pp. 1925-1934
    • Kisi, O.1
  • 22
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi O. Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 2007, 12:532-539.
    • (2007) J. Hydrol. Eng. , vol.12 , pp. 532-539
    • Kisi, O.1
  • 23
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh P., Deo M.C. Suitability of different neural networks in daily flow forecasting. Appl. Softw. Comput. 2007, 7:968-978.
    • (2007) Appl. Softw. Comput. , vol.7 , pp. 968-978
    • Singh, P.1    Deo, M.C.2
  • 24
    • 33747853860 scopus 로고    scopus 로고
    • Drought forecasting using feed-forward recursive neural network
    • Mishra A.K., Desai V.R. Drought forecasting using feed-forward recursive neural network. Ecol. Model. 2006, 198:127-138.
    • (2006) Ecol. Model. , vol.198 , pp. 127-138
    • Mishra, A.K.1    Desai, V.R.2
  • 25
    • 70350075067 scopus 로고    scopus 로고
    • Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area
    • Wang Y.M., Traore S. Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area. Int. J. Phys. Sci. 2009, 4(9):519-528.
    • (2009) Int. J. Phys. Sci. , vol.4 , Issue.9 , pp. 519-528
    • Wang, Y.M.1    Traore, S.2
  • 27
    • 73549096397 scopus 로고    scopus 로고
    • Monthly reservoir inflow modeling using time lagged recurrent networks
    • Kote A.S., Jothiprakash V. Monthly reservoir inflow modeling using time lagged recurrent networks. Int. J. Tomogr. Stat. 2009, 12:64-84.
    • (2009) Int. J. Tomogr. Stat. , vol.12 , pp. 64-84
    • Kote, A.S.1    Jothiprakash, V.2
  • 28
    • 38349159579 scopus 로고    scopus 로고
    • Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics
    • Jeong K.S., Kimb D.K., Jungc J.M., Kimb M.C., Joob G.J. Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecol. Model. 2008, 211:292-300.
    • (2008) Ecol. Model. , vol.211 , pp. 292-300
    • Jeong, K.S.1    Kimb, D.K.2    Jungc, J.M.3    Kimb, M.C.4    Joob, G.J.5
  • 29
    • 33847223427 scopus 로고    scopus 로고
    • Using time-delay neural network combined with genetic algorithms to predict runoff level of Linshan Watershed, Sichuan, China
    • Wang X.K., Lu W.Z., Cao S.Y., Fang D. Using time-delay neural network combined with genetic algorithms to predict runoff level of Linshan Watershed, Sichuan, China. J. Hydrol. Eng. 2007, 12(2):231-236.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.2 , pp. 231-236
    • Wang, X.K.1    Lu, W.Z.2    Cao, S.Y.3    Fang, D.4
  • 30
    • 34248158956 scopus 로고    scopus 로고
    • A deterministic linearized recurrent neural network for recognizing the transition of rainfall-runoff processes
    • Pan T.Y., Wang R.Y., Lai J.S. A deterministic linearized recurrent neural network for recognizing the transition of rainfall-runoff processes. Adv. Water Resour. 2007, 30:1797-1814.
    • (2007) Adv. Water Resour. , vol.30 , pp. 1797-1814
    • Pan, T.Y.1    Wang, R.Y.2    Lai, J.S.3
  • 31
    • 0008412775 scopus 로고
    • Wiley, New York
    • Haykin S. Commun. Syst. 1994, Wiley, New York, pp 45-90. second ed.
    • (1994) Commun. Syst. , pp. 45-90
    • Haykin, S.1
  • 33
    • 32044447474 scopus 로고    scopus 로고
    • Uncertainty analysis of statistical downscaling methods
    • Khan M.S., Coulibaly P., Dibike Y. Uncertainty analysis of statistical downscaling methods. J. Hydrol. 2006, 319(1-4):357-382.
    • (2006) J. Hydrol. , vol.319 , Issue.1-4 , pp. 357-382
    • Khan, M.S.1    Coulibaly, P.2    Dibike, Y.3
  • 34
    • 0031551927 scopus 로고    scopus 로고
    • Time series analysis on chlorides nitrates ammonium and dissolved oxygen concentrations in the Siene River near Paris
    • Cun C., Vilagines R. Time series analysis on chlorides nitrates ammonium and dissolved oxygen concentrations in the Siene River near Paris. Sci Total Environ. 1997, 208(1-2):59-69.
    • (1997) Sci Total Environ. , vol.208 , Issue.1-2 , pp. 59-69
    • Cun, C.1    Vilagines, R.2
  • 35
    • 71149084920 scopus 로고    scopus 로고
    • Operation analysis of Eleviyan irrigation reservoir dam by optimization and stochastic simulation
    • Sattari Taghi M., Apaydin H., Öztürk F. Operation analysis of Eleviyan irrigation reservoir dam by optimization and stochastic simulation. J. Stochastic Environ. Res. Risk Asses. 2009, 23:1187-1201.
    • (2009) J. Stochastic Environ. Res. Risk Asses. , vol.23 , pp. 1187-1201
    • Sattari Taghi, M.1    Apaydin, H.2    Öztürk, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.