메뉴 건너뛰기




Volumn 19, Issue 1, 2012, Pages 3-21

Bayesian neural networks for bridge integrity assessment

Author keywords

automatic relevance determination; Bayesian neural networks; damage identification; integrity assessment; long span bridges; model selection; probability logic approach

Indexed keywords

AUTOMATIC RELEVANCE DETERMINATION; BAYESIAN NEURAL NETWORKS; DAMAGE IDENTIFICATION; INTEGRITY ASSESSMENT; LONG-SPAN BRIDGE; MODEL SELECTION; PROBABILITY LOGIC APPROACH;

EID: 84857012806     PISSN: 15452255     EISSN: 15452263     Source Type: Journal    
DOI: 10.1002/stc.420     Document Type: Article
Times cited : (71)

References (57)
  • 1
    • 4544365917 scopus 로고    scopus 로고
    • Development of a model health monitoring guide for major bridges
    • Federal Highway Administration Research and Development, Drexel Intelligent Infrastructure and Transportation Safety Institute
    • Aktan AE, Catbas FN, Grimmelsman KA, Pervizpour M,. Development of a model health monitoring guide for major bridges. Report DTFH61-01-P-00347, Federal Highway Administration Research and Development, Drexel Intelligent Infrastructure and Transportation Safety Institute, 2002.
    • (2002) Report DTFH61-01-P-00347
    • Aktan, A.E.1    Catbas, F.N.2    Grimmelsman, K.A.3    Pervizpour, M.4
  • 2
    • 39749176561 scopus 로고    scopus 로고
    • Systemic approach for the maintenance of complex structural systems
    • DOI 10.1080/15732470601155235, PII 782133639, Long-Term Performance of Structural Systems
    • Bontempi F, Gkoumas K, Arangio S,. Systemic approach for the maintenance of complex structural systems. Structure and Infrastructure Engineering 2008; 4: 77-94. DOI: 10.1080/15732470601155235. (Pubitemid 351292166)
    • (2008) Structure and Infrastructure Engineering , vol.4 , Issue.2 , pp. 77-94
    • Bontempi, F.1    Gkoumas, K.2    Arangio, S.3
  • 3
    • 0032210031 scopus 로고    scopus 로고
    • Optimal planning of retrofitting interventions on bridges in a highway network
    • PII S0141029697001867
    • Augusti G, Ciampoli M, Frangopol DM,. Optimal planning of retrofitting interventions on bridges in a highway network. Engineering Structures 1998; 20 (11): 933-939. (Pubitemid 128368822)
    • (1998) Engineering Structures , vol.20 , Issue.11 , pp. 933-939
    • Augusti, G.1    Ciampoli, M.2    Frangopol, D.M.3
  • 4
    • 33645412451 scopus 로고    scopus 로고
    • An overview of structural health monitoring expertise within the European Union
    • Wu Z.S. Abe M. (eds), Lisse: Balkema
    • Casciati F,. An overview of structural health monitoring expertise within the European Union. In Structural Health Monitoring and Intelligent Infrastructure, Wu ZS, Abe M, (eds), Lisse: Balkema, 2003; 31-37.
    • (2003) Structural Health Monitoring and Intelligent Infrastructure , pp. 31-37
    • Casciati, F.1
  • 6
    • 85001104724 scopus 로고    scopus 로고
    • Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review
    • Doebling SW, Farrar CR, Prime MB, Shevitz DW,. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Los Alamos National Laboratory Report LA-13070-MS, 1996.
    • (1996) Los Alamos National Laboratory Report LA-13070-MS
    • Doebling, S.W.1    Farrar, C.R.2    Prime, M.B.3    Shevitz, D.W.4
  • 9
    • 0035044111 scopus 로고    scopus 로고
    • Neural networks in civil engineering: 1989-2000
    • Adeli H,. Neural networks in civil engineering: 1989-2000. Computer-Aided Civil and Infrastructure Engineering 2001; 16 (2): 126-142. (Pubitemid 32324912)
    • (2001) Computer-Aided Civil and Infrastructure Engineering , vol.16 , Issue.2 , pp. 126-142
    • Adeli, H.1
  • 10
    • 18444371597 scopus 로고    scopus 로고
    • Application of neural networks in modeling and design of structural systems
    • Waszczyszyn Z. (ed.). Springer: Berlin
    • Hajela P,. Application of neural networks in modeling and design of structural systems. In Neural Networks in the Analysis and Design of Structures, Waszczyszyn Z, (ed.). Springer: Berlin, 1999.
    • (1999) Neural Networks in the Analysis and Design of Structures
    • Hajela, P.1
  • 12
    • 0142011522 scopus 로고    scopus 로고
    • Detection of structural damage via free vibration responses generated by approximating artificial neural networks
    • Kao CY, Hung SL,. Detection of structural damage via free vibration responses generated by approximating artificial neural networks. Computers and Structures 2003; 81: 2631-2644.
    • (2003) Computers and Structures , vol.81 , pp. 2631-2644
    • Kao, C.Y.1    Hung, S.L.2
  • 13
    • 23844557791 scopus 로고    scopus 로고
    • Technology developments in structural health monitoring of large-scale bridges
    • DOI 10.1016/j.engstruct.2005.02.021, PII S014102960500218X
    • Ko JM, Ni YQ,. Technology developments in structural health monitoring of large-scale bridges. Engineering Structures 2005; 27: 1715-1725. (Pubitemid 41179285)
    • (2005) Engineering Structures , vol.27 , Issue.12 SPEC. ISS. , pp. 1715-1725
    • Ko, J.M.1    Ni, Y.Q.2
  • 14
    • 37149056100 scopus 로고    scopus 로고
    • Neural networks in the identification analysis of structural mechanics problems
    • Mroz Z. Stavroulakis G.E. (eds), Springer: Berlin
    • Waszczyszyn Z, Ziemianski L,. Neural networks in the identification analysis of structural mechanics problems. In Parameter Identification of Materials and Structures, Mroz Z, Stavroulakis GE, (eds), Springer: Berlin, 2005.
    • (2005) Parameter Identification of Materials and Structures
    • Waszczyszyn, Z.1    Ziemianski, L.2
  • 15
    • 0026822025 scopus 로고
    • Use of neural networks in prediction of structural damage
    • Wu X, Ghaboussi J, Garret Jr JH,. Use of neural networks in prediction of structural damage. Computer and Structures 1992; 42 (4): 649-659.
    • (1992) Computer and Structures , vol.42 , Issue.4 , pp. 649-659
    • Wu, X.1    Ghaboussi, J.2    Garret, Jr.J.H.3
  • 17
    • 0029252342 scopus 로고
    • Multilayer perceptron in damage detection of bridge structures
    • Pandey PC, Barai SV,. Multilayer perceptron in damage detection of bridge structures. Computer and Structures 1995; 54 (4): 597-608.
    • (1995) Computer and Structures , vol.54 , Issue.4 , pp. 597-608
    • Pandey, P.C.1    Barai, S.V.2
  • 19
    • 0033728907 scopus 로고    scopus 로고
    • Structural monitoring system based on sensitivity analysis and a neural network
    • Kim SH, Yoon C, Kim BJ,. Structural monitoring system based on sensitivity analysis and a neural network. Computer-Aided Civil and Infrastructure Engineering 2000; 15 (4): 309-318.
    • (2000) Computer-Aided Civil and Infrastructure Engineering , vol.15 , Issue.4 , pp. 309-318
    • Kim, S.H.1    Yoon, C.2    Kim, B.J.3
  • 20
    • 0036961496 scopus 로고    scopus 로고
    • Constructing input vectors to neural networks for structural damage identification
    • Ni YQ, Wong BS, Ko JM,. Constructing input vectors to neural networks for structural damage identification. Smart Materials and Structures 2002; 11: 825-833.
    • (2002) Smart Materials and Structures , vol.11 , pp. 825-833
    • Ni, Y.Q.1    Wong, B.S.2    Ko, J.M.3
  • 21
    • 0036642429 scopus 로고    scopus 로고
    • Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge
    • DOI 10.1016/S0141-0296(02)00024-X, PII S014102960200024X
    • Ko JM, Sun ZG, Ni YQ,. Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge. Engineering Structures 2002; 24: 857-868. (Pubitemid 34674463)
    • (2002) Engineering Structures , vol.24 , Issue.7 , pp. 857-868
    • Ko, J.M.1    Sun, Z.G.2    Ni, Y.Q.3
  • 22
    • 33646745520 scopus 로고    scopus 로고
    • Damage detection in a girder bridge by artificial neural network technique
    • Xu H, Humar J,. Damage detection in a girder bridge by artificial neural network technique. Computer-Aided Civil and Infrastructure Engineering 2006; 21: 450-464.
    • (2006) Computer-Aided Civil and Infrastructure Engineering , vol.21 , pp. 450-464
    • Xu, H.1    Humar, J.2
  • 24
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back-propagation networks
    • MacKay DJC,. A practical Bayesian framework for back-propagation networks. Neural Computation 1992; 4 (3): 448-472.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 26
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G,. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signal and Systems 1989; 2: 304-314.
    • (1989) Mathematics of Control, Signal and Systems , vol.2 , pp. 304-314
    • Cybenko, G.1
  • 30
    • 0003414592 scopus 로고
    • (1st edn). Clarendon Press: Oxford, 3rd edn, Oxford University Press, Oxford, 1961
    • Jeffreys H,. Theory of Probability (1st edn). Clarendon Press: Oxford, 1939; 3rd edn, Oxford University Press, Oxford, 1961.
    • (1939) Theory of Probability
    • Jeffreys, H.1
  • 31
    • 0002282678 scopus 로고
    • Probability, frequency and reasonable expectation
    • Cox RT,. Probability, frequency and reasonable expectation. American Journal of Physics 1946; 14: 1-13.
    • (1946) American Journal of Physics , vol.14 , pp. 1-13
    • Cox, R.T.1
  • 32
    • 0033701961 scopus 로고    scopus 로고
    • A Bayesian probabilistic approach to structural health monitoring
    • Vanik MW, Beck JL, Au SK,. A Bayesian probabilistic approach to structural health monitoring. Journal of Engineering Mechanics 2000; 126: 738-745.
    • (2000) Journal of Engineering Mechanics , vol.126 , pp. 738-745
    • Vanik, M.W.1    Beck, J.L.2    Au, S.K.3
  • 34
    • 1342266172 scopus 로고    scopus 로고
    • Model selection using response measurements: Bayesian probabilistic approach
    • DOI 10.1061/(ASCE)0733-9399(2004)130:2(192)
    • Beck JL, Yuen K-V,. Model selection using response measurements: Bayesian probabilistic approach. Journal of Engineering Mechanics 2004; 130: 192-203. (Pubitemid 38242322)
    • (2004) Journal of Engineering Mechanics , vol.130 , Issue.2 , pp. 192-203
    • Beck, J.L.1    Yuen, K.-V.2
  • 35
    • 0036496820 scopus 로고    scopus 로고
    • Bayesian modal updating using complete input and incomplete response noisy measurements
    • DOI 10.1061/(ASCE)0733-9399(2002)128:3(340)
    • Yuen KV, Katafygiotis LS,. Bayesian modal updating using complete input and incomplete response noisy measurements. Journal of Engineering Mechanics 2002; 128 (3): 340-350. (Pubitemid 34246800)
    • (2002) Journal of Engineering Mechanics , vol.128 , Issue.3 , pp. 340-350
    • Yuen, K.-V.1    Katafygiotis, L.S.2
  • 36
    • 38149065122 scopus 로고    scopus 로고
    • Bayesian updating of hysteretic structural models using stochastic simulation
    • Muto M, Beck JL,. Bayesian updating of hysteretic structural models using stochastic simulation. Journal of Vibration and Control 2008; 14: 7-34.
    • (2008) Journal of Vibration and Control , vol.14 , pp. 7-34
    • Muto, M.1    Beck, J.L.2
  • 37
    • 0003320606 scopus 로고    scopus 로고
    • System identification methods applied to measured seismic response
    • Acapulco, Mexico, Disc 4, Paper No. 2004, Lee, Espinosa-Aranda (eds)
    • Beck JL,. System identification methods applied to measured seismic response. In Proceedings of the Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, Disc 4, Paper No. 2004, Lee, Espinosa-Aranda (eds), 1996.
    • (1996) Proceedings of the Eleventh World Conference on Earthquake Engineering
    • Beck, J.L.1
  • 39
    • 0000235984 scopus 로고    scopus 로고
    • Updating models and their uncertainties. I: Bayesian statistical framework
    • Beck JL, Katafygiotis LS,. Updating models and their uncertainties- Bayesian statistical framework. Journal of Engineering Mechanics 1998; 124: 455-461. (Pubitemid 128571487)
    • (1998) Journal of Engineering Mechanics , vol.124 , Issue.4 , pp. 455-461
    • Beck, J.L.1    Katafygiotis, L.S.2
  • 40
  • 41
    • 0000335983 scopus 로고
    • Bayesian methods for backpropagation networks
    • Chapter 6. Springer: Berlin
    • MacKay DJC,. Bayesian methods for backpropagation networks. Model of Neural Networks III, Chapter 6. Springer: Berlin, 1994; 211-254.
    • (1994) Model of Neural Networks III , pp. 211-254
    • MacKay, D.J.C.1
  • 42
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks - Review and case studies
    • DOI 10.1016/S0893-6080(00)00098-8, PII S0893608000000988
    • Lampinen J, Vethari A,. Bayesian approach for neural networks-review and case studies. Neural Networks 2001; 14 (3): 257-274. (Pubitemid 32288857)
    • (2001) Neural Networks , vol.14 , Issue.3 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 43
    • 77953732371 scopus 로고    scopus 로고
    • Bayesian methods for supervised neural networks
    • MIT Press, Cambridge
    • Barber D,. Bayesian methods for supervised neural networks. Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, 2002.
    • (2002) Handbook of Brain Theory and Neural Networks
    • Barber, D.1
  • 50
    • 0016355478 scopus 로고
    • A new look at the statistical identification model
    • Akaike H,. A new look at the statistical identification model. IEEE Transactions on Automatic Control 1974; 19: 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 53
    • 33644811545 scopus 로고    scopus 로고
    • Structural health monitoring via measured ritz vectors utilizing artificial neural networks
    • DOI 10.1111/j.1467-8667.2006.00431.x
    • Lam HF, Yuen KV, Beck JL,. Structural health monitoring via measured Ritz vectors utilizing artificial neural networks. Computer-Aided Civil and Infrastructure Engineering 2006; 21: 232-241. (Pubitemid 43349334)
    • (2006) Computer-Aided Civil and Infrastructure Engineering , vol.21 , Issue.4 , pp. 232-241
    • Lam, H.-F.1    Yuen, K.-V.2    Beck, J.L.3
  • 56
    • 0029533185 scopus 로고
    • Hierarchical use of neural techniques in structural damage recognition
    • Ceravolo R, de Stefano A, Sabia D,. Hierarchical use of neural techniques in structural damage recognition. Smart Material and Structures 1995; 4: 270-280.
    • (1995) Smart Material and Structures , vol.4 , pp. 270-280
    • Ceravolo, R.1    De Stefano, A.2    Sabia, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.