메뉴 건너뛰기




Volumn 6, Issue , 2008, Pages 29-38

Supervised ensembles of prediction methods for subcellular localization

Author keywords

[No Author keywords available]

Indexed keywords

EXPERIMENTAL EVALUATION; LEARNING APPROACH; PREDICTION METHODS; SUBCELLULAR LOCALIZATIONS;

EID: 84856828208     PISSN: 17516404     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (29)
  • 1
    • 0036187913 scopus 로고    scopus 로고
    • Extensive feature detection of N-terminal protein sorting signals
    • H. Bannai, Y. Tamada, O. Maruyama, K. Nakai, and S. Miyano. Extensive feature detection of n-terminal protein sorting signals. Bioinformatics, 18(2):298-305, 2002. (Pubitemid 34183107)
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 298-305
    • Bannai, H.1    Tamada, Y.2    Maruyama, O.3    Nakai, K.4    Miyano, S.5
  • 2
    • 3042521098 scopus 로고    scopus 로고
    • Improved prediction of signal peptides: SignalP 3.0
    • DOI 10.1016/j.jmb.2004.05.028, PII S0022283604005972
    • J.-D. Bendtsen, H. Nielsen, G. von Heijne, and S. Brunak. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol., 340(4):783-795, 2004. (Pubitemid 38829638)
    • (2004) Journal of Molecular Biology , vol.340 , Issue.4 , pp. 783-795
    • Bendtsen, J.D.1    Nielsen, H.2    Von Heijne, G.3    Brunak, S.4
  • 3
    • 19544388127 scopus 로고    scopus 로고
    • PSLpred: Prediction of subcellular localization of bacterial proteins
    • DOI 10.1093/bioinformatics/bti309
    • M. Bhasin, A. Garg, and G.-P.-S. Raghava. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics, 21(10):2522-2524, 2005. (Pubitemid 40731613)
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2522-2524
    • Bhasin, M.1    Garg, A.2    Raghava, G.P.S.3
  • 4
    • 3242877807 scopus 로고    scopus 로고
    • ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST
    • DOI 10.1093/nar/gkh350
    • M. Bhasin and G. P. S. Raghava. ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST. Nucleic Acids Res., 32(Web Server Issue):W414-W419, 2004. (Pubitemid 38997368)
    • (2004) Nucleic Acids Research , vol.32 , Issue.WEB SERVER ISS.
    • Bhasin, M.1    Raghava, G.P.S.2
  • 5
    • 0029915525 scopus 로고    scopus 로고
    • Computational method to predict mitochondrially imported proteins and their targeting sequences
    • M.-G. Claros and P. Vincens. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem., 241(3):779-786, 1996. (Pubitemid 26379380)
    • (1996) European Journal of Biochemistry , vol.241 , Issue.3 , pp. 779-786
    • Claros, M.G.1    Vincens, P.2
  • 6
    • 0034331073 scopus 로고    scopus 로고
    • Finding nuclear localization signals
    • M. Cokol, R. Nair, and B. Rost. Finding nuclear localization signals. EMBO Rep., 1(5):411-415, 2000.
    • (2000) EMBO Rep. , vol.1 , Issue.5 , pp. 411-415
    • Cokol, M.1    Nair, R.2    Rost, B.3
  • 7
    • 0002900451 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • T. G. Dietterich. Ensemble methods in machine learning. In Proc. MCS, 2000.
    • (2000) Proc. MCS
    • Dietterich, T.G.1
  • 9
    • 24644450611 scopus 로고    scopus 로고
    • Predicting protein subcellular localization: Past, present, and future
    • P. Dönnes and A. Höglund. Predicting protein subcellular localization: Past, present, and future. Geno. Prot. Bioinfo., 2(4):209-215, 2004.
    • (2004) Geno. Prot. Bioinfo. , vol.2 , Issue.4 , pp. 209-215
    • Dönnes, P.1    Höglund, A.2
  • 10
    • 15844431346 scopus 로고    scopus 로고
    • PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis
    • DOI 10.1093/bioinformatics/bti057
    • J. L. Gardy, M. R. Laird, F. Chen, S. Rey, C. J.Walsh, M. Ester, and F. S. L. Brinkman. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics, 21(5):617-623, 2005. (Pubitemid 40424787)
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 617-623
    • Gardy, J.L.1    Laird, M.R.2    Chen, F.3    Rey, S.4    Walsh, C.J.5    Ester, M.6    Brinkman, F.S.L.7
  • 12
    • 17644389617 scopus 로고    scopus 로고
    • Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search
    • DOI 10.1074/jbc.M411789200
    • A. Garg,M. Bhasin, and G. P. S. Raghava. Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search. J. Biol. Chem., 280(15):14427-14432, 2005. (Pubitemid 40562782)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.15 , pp. 14427-14432
    • Garg, A.1    Bhasin, M.2    Raghava, G.P.S.3
  • 13
    • 3242875263 scopus 로고    scopus 로고
    • MITOPRED: A genome-scale method for prediction of nucleus-encoded mitchondrial proteins
    • DOI 10.1093/bioinformatics/bth171
    • C. Guda, E. Fahy, and S. Subramaniam. MITOPRED: a genome-scale method for prediction of nucleus-encoded mitochondrial proteins. Bioinformatics, 20(11):1785-1794, 2004. (Pubitemid 39162055)
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1785-1794
    • Guda, C.1    Fahy, E.2    Subramaniam, S.3
  • 14
    • 33748929503 scopus 로고    scopus 로고
    • Protein subcellular localization prediction with WoLF PSORT
    • P. Horton, K.-J. Park, T. Obayashi, and K. Nakai. Protein subcellular localization prediction with WoLF PSORT. In Proc. APBC, 2006.
    • (2006) Proc. APBC
    • Horton, P.1    Park, K.-J.2    Obayashi, T.3    Nakai, K.4
  • 15
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • S. Hua and Z. Sun. Support vector machine approach for protein subcellular localization prediction. Bioinformatics, 17(8):721-728, 2001. (Pubitemid 32851380)
    • (2001) Bioinformatics , vol.17 , Issue.8 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 16
    • 0347093598 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations using fuzzy k-NN method
    • DOI 10.1093/bioinformatics/btg366
    • Y. Huang and Y. Li. Prediction of protein subcellular locations using fuzzy k-NN method. Bioinformatics, 20(1):21-28, 2004. (Pubitemid 38088336)
    • (2004) Bioinformatics , vol.20 , Issue.1 , pp. 21-28
    • Huang, Y.1    Li, Y.2
  • 17
    • 1942505330 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions
    • DOI 10.1110/ps.03479604
    • J.-K. Hwang, C.-J. Lin, and C.-S. Yu. Predicting subcellular localization of proteins for gramnegative bacteria by support vector machines based on n-peptide compositions. Protein Science, 13:1402-1406, 2004. (Pubitemid 38526105)
    • (2004) Protein Science , vol.13 , Issue.5 , pp. 1402-1406
    • Yu, C.-S.1    Lin, C.-J.2    Hwang, J.-K.3
  • 18
    • 33646861792 scopus 로고    scopus 로고
    • MultiLoc: Prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition
    • DOI 10.1093/bioinformatics/btl002
    • A. Höglund, P.Dönnes, T. Blum, H.-W.Adolph, and O. Kohlbacher.MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics, 22(10):1158-1165, 2006. (Pubitemid 43779005)
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1158-1165
    • Hoglund, A.1    Donnes, P.2    Blum, T.3    Adolph, H.-W.4    Kohlbacher, O.5
  • 19
    • 1542400030 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins using machine-learned classifiers
    • DOI 10.1093/bioinformatics/btg447
    • Z. Lu, D. Szafron, R. Greiner, P. Lu, D.S.Wishart, B. Poulin, J. Anvik, C.Macdonell, and R. Eisner. Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics, 20(4):547-556, 2004. (Pubitemid 38344335)
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 547-556
    • Lu, Z.1    Szafron, D.2    Greiner, R.3    Lu, P.4    Wishart, D.S.5    Poulin, B.6    Anvik, J.7    Macdonell, C.8    Eisner, R.9
  • 20
    • 0032972509 scopus 로고    scopus 로고
    • PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization
    • K. Nakai and P. Horton. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci., 24(1):34-36, 1999.
    • (1999) Trends Biochem. Sci. , vol.24 , Issue.1 , pp. 34-36
    • Nakai, K.1    Horton, P.2
  • 21
    • 0027105007 scopus 로고
    • A knowledge base for predicting protein localization sites in eukaryotic cells
    • DOI 10.1016/S0888-7543(05)80111-9
    • K. Nakai and M. Kanehisa. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics, 14(4):897-911, 1992. (Pubitemid 23053027)
    • (1992) Genomics , vol.14 , Issue.4 , pp. 897-911
    • Nakai, K.1    Kanehisa, M.2
  • 22
    • 0028239038 scopus 로고
    • Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies
    • DOI 10.1006/jmbi.1994.1267
    • H. Nakashima and K. Nishikawa. Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J. Mol. Biol., 238(1):54-61, 1994. (Pubitemid 24156401)
    • (1994) Journal of Molecular Biology , vol.238 , Issue.1 , pp. 54-61
    • Nakashima, H.1    Nishikawa, K.2
  • 23
    • 0141515750 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino pairs
    • DOI 10.1093/bioinformatics/btg222
    • K.-J. Park and M. Kanehisa. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics, 19(13):1656-1663, 2003. (Pubitemid 37121154)
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1656-1663
    • Park, K.-J.1    Kanehisa, M.2
  • 24
    • 0032077533 scopus 로고    scopus 로고
    • Using neural networks for prediction of the subcellular location of proteins
    • DOI 10.1093/nar/26.9.2230
    • A. Reinhardt and T. Hubbart. Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res., 26:2230-2236, 1998. (Pubitemid 28291771)
    • (1998) Nucleic Acids Research , vol.26 , Issue.9 , pp. 2230-2236
    • Reinhardt, A.1    Hubbard, T.2
  • 25
    • 2942589051 scopus 로고    scopus 로고
    • Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences
    • DOI 10.1002/pmic.200300776
    • I. Small, N. Peeters, F. Legeai, and C. Lurin. Predotar: A tool for rapidly screening proteomes for n-terminal targeting sequences. Proteomics, 4(6):1581-1590, 2004. (Pubitemid 38738317)
    • (2004) Proteomics , vol.4 , Issue.6 , pp. 1581-1590
    • Small, I.1    Peeters, N.2    Legeai, F.3    Lurin, C.4
  • 27
    • 0023046815 scopus 로고
    • A new method for predicting signal sequence cleavage sites
    • G. von Heijne. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res., 14(11):4683-4690, 1986.
    • (1986) Nucleic Acids Res. , vol.14 , Issue.11 , pp. 4683-4690
    • Von Heijne, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.