-
2
-
-
77955988502
-
The role of features, algorithms and data in visual recognition
-
D. Parikh and C. L. Zitnick. The Role of Features, Algorithms and Data in Visual Recognition. CVPR, 2010.
-
(2010)
CVPR
-
-
Parikh, D.1
Zitnick, C.L.2
-
3
-
-
33745155436
-
A bayesian hierarchical model for learning natural scene categories
-
L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories. CVPR, 2005.
-
(2005)
CVPR
-
-
Fei-Fei, L.1
Perona, P.2
-
4
-
-
77956008537
-
A probabilistic image jigsaw puzzle solver
-
T. S. Cho, S. Avidan andW. T. Freeman. A Probabilistic Image Jigsaw Puzzle Solver. CVPR, 2010.
-
(2010)
CVPR
-
-
Cho, T.S.1
Avidan, S.2
Freeman, W.T.3
-
6
-
-
80052886153
-
Finding the weakest link in person detectors
-
D. Parikh and C. L. Zitnick. Finding the Weakest Link in Person Detectors. CVPR, 2011.
-
(2011)
CVPR
-
-
Parikh, D.1
Zitnick, C.L.2
-
7
-
-
33749236045
-
Building the gist of a scene: The role of global image features in recognition
-
A. Oliva and A. Torralba. Building the Gist of a Scene: The Role of Global Image Features in Recognition. Progress in Brain Research, 2006.
-
(2006)
Progress in Brain Research
-
-
Oliva, A.1
Torralba, A.2
-
10
-
-
84887323591
-
Identification of spatially quantized tachistoscopic images of faces: How many pixels does it take to carry identity?
-
T. Bachmann. Identification of spatially quantized tachistoscopic images of faces: How many pixels does it take to carry identity? Europ. Jour, of Cognitive Psychology, 1991.
-
(1991)
Europ Jour, of Cognitive Psychology
-
-
Bachmann, T.1
-
12
-
-
54749092170
-
80 million tiny images: A large dataset for non-parametric object and scene recognition
-
A. Torralba, R. Fergus and W. T. Freeman. 80 million tiny images: A large dataset for non-parametric object and scene recognition. PAMI, 2008.
-
(2008)
PAMI
-
-
Torralba, A.1
Fergus, R.2
Freeman, W.T.3
-
14
-
-
0141756308
-
After the view point debate: Where next in object recognition?
-
W. Hayward. After the Viewpoint Debate: Where Next in Object Recognition? Trends in Cognitive Sciences, 2003.
-
(2003)
Trends in Cognitive Sciences
-
-
Hayward, W.1
-
15
-
-
51949087935
-
From appearance to context-based recognition: Dense labeling in small images
-
D. Parikh, C. Zitnick and T. Chen. From Appearance to Context-Based Recognition: Dense Labeling in Small Images. CVPR, 2008.
-
(2008)
CVPR
-
-
Parikh, D.1
Zitnick, C.2
Chen, T.3
-
16
-
-
0035328421
-
Modeling the shape of the scene: A holistic representation of the spatial envelope
-
A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV, 2001
-
(2001)
IJCV
-
-
Oliva, A.1
Torralba, A.2
-
17
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. CVPR, 2006.
-
(2006)
CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
18
-
-
0015496840
-
Perceiving real-world scenes
-
I. Biederman. Perceiving Real-World Scenes. Science, 1972.
-
(1972)
Science
-
-
Biederman, I.1
-
22
-
-
33645231607
-
Independence from context information provided by spatial signature learning in a natural object localization task
-
G. Giraudet and C. Roumes. Independence from Context Information Provided by Spatial Signature Learning in a Natural Object Localization Task. Notes in Artificial Intelligence: Modelling and Using Context, 1999.
-
(1999)
Notes in Artificial Intelligence: Modelling and Using Context
-
-
Giraudet, G.1
Roumes, C.2
-
24
-
-
0038175229
-
Does disruption of a scene impair change detection?
-
K. Yokosawa and H. Mitsumatsu. Does Disruption of a Scene Impair Change Detection? Journal of Vision, 2003.
-
(2003)
Journal of Vision
-
-
Yokosawa, K.1
Mitsumatsu, H.2
-
26
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus and P. Perona. Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. CVPR, Workshop on Generative-Model Based Vision, 2004.
-
(2004)
CVPR Workshop on Generative-Model Based Vision
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
28
-
-
0035358496
-
Representing and recognizing the visual appearance of materials using three-dimensional textons
-
T. Leung and J. Malik. Representing and Recognizing the Visual Appearance of Materials Using Three-dimensional Textons. IJCV, 2001.
-
(2001)
IJCV
-
-
Leung, T.1
Malik, J.2
|