메뉴 건너뛰기




Volumn 17, Issue 6, 2010, Pages 614-631

Nearest neighbor and learning vector quantization classification for damage detection using time series analysis

Author keywords

Autoregressive models; Damage detection; Learning vector quantization; Nearest neighbor classification; Structural health monitoring; Time series analysis

Indexed keywords

ACCELERATION-TIME HISTORY; AR MODELS; AUTO REGRESSIVE MODELS; BENCHMARK STRUCTURE; CLASSIFICATION TECHNIQUE; DAMAGE CLASSIFICATION; DAMAGE STATE; DAMAGE-SENSITIVE FEATURES; DIMENSIONALITY REDUCTION; LEARNING VECTOR QUANTIZATION; NEAREST NEIGHBOR CLASSIFICATION; NEAREST NEIGHBORS; PHASE II; SAMMON MAPPING; SERIES ANALYSIS; STATISTICAL PATTERN RECOGNITION; STRUCTURAL HEALTH; TIME SERIES MODELS; TWO-DIMENSIONAL PROJECTION;

EID: 84856361730     PISSN: 15452255     EISSN: 15452263     Source Type: Journal    
DOI: 10.1002/stc.335     Document Type: Article
Times cited : (47)

References (41)
  • 6
    • 31144439579 scopus 로고    scopus 로고
    • Application of time series analysis for bridge monitoring
    • DOI 10.1088/0964-1726/15/1/041, PII S0964172606129444
    • Omenzetter P, Brownjohn JMW. Application of time series analysis for bridge monitoring. Smart Materials and Structures 2006; 15:129-138. (Pubitemid 43131645)
    • (2006) Smart Materials and Structures , vol.15 , Issue.1 , pp. 129-138
    • Omenzetter, P.1    Brownjohn, J.M.W.2
  • 7
    • 30344437620 scopus 로고    scopus 로고
    • Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure
    • DOI 10.1016/j.jsv.2005.06.016, PII S0022460X05004098
    • Nair KK, Kiremidjian AS, Law KH. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. Journal of Sound and Vibration 2006; 291:349-368. (Pubitemid 43069454)
    • (2006) Journal of Sound and Vibration , vol.291 , Issue.1-2 , pp. 349-368
    • Nair, K.K.1    Kiremidjian, A.S.2    Law, K.H.3
  • 9
    • 0026822025 scopus 로고
    • Use of neural networks in detection of structural damage
    • Wu X, Ghaboussi J, Garrett JH. Use of neural networks in detection of structural damage. Computers and Structures 1992; 42:649-659.
    • (1992) Computers and Structures , vol.42 , pp. 649-659
    • Wu, X.1    Ghaboussi, J.2    Garrett, J.H.3
  • 11
    • 29144497217 scopus 로고    scopus 로고
    • Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks
    • DOI 10.1016/j.jsv.2005.03.016, PII S0022460X05002567
    • Ni YQ, Zhou XT, Ko JM. Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks. Journal of Sound and Vibration 2006; 290:242-263. (Pubitemid 41802247)
    • (2006) Journal of Sound and Vibration , vol.290 , Issue.1-2 , pp. 242-263
    • Ni, Y.Q.1    Zhou, X.T.2    Ko, J.M.3
  • 12
    • 0031549548 scopus 로고    scopus 로고
    • Damage assessment of multiple cracked beams: Numerical results and experimental validation
    • Ruotolo R, Surace C. Damage assessment of multiple cracked beams: Numerical results and experimental validation. Journal of Sound and Vibration 1997; 206:567-588. (Pubitemid 127401742)
    • (1997) Journal of Sound and Vibration , vol.206 , Issue.4 , pp. 567-588
    • Ruotolo, R.1    Surace, C.2
  • 13
    • 0035360461 scopus 로고    scopus 로고
    • Damage identification using support vector machines
    • DOI 10.1088/0964-1726/10/3/317, PII S0964172601227980
    • Worden K, Lane AJ. Damage identification using support vector machines. Smart Materials and Structures 2001; 10:540-547. (Pubitemid 32637038)
    • (2001) Smart Materials and Structures , vol.10 , Issue.3 , pp. 540-547
    • Worden, K.1    Lane, A.J.2
  • 14
    • 33847757556 scopus 로고    scopus 로고
    • Structural damage detection with wavelet support vector machine: Introduction and applications
    • DOI 10.1002/stc.150
    • He H-X, Yan W-M. Structural damage detection with wavelet support vector machine: Introduction and applications. Structural Control and Health Monitoring 2007; 14:162-176. (Pubitemid 46381907)
    • (2007) Structural Control and Health Monitoring , vol.14 , Issue.1 , pp. 162-176
    • He, H.-X.1    Yan, W.-M.2
  • 15
    • 0031211465 scopus 로고    scopus 로고
    • Relative performance of clustering-based neural network and statistical pattern recognition models for nondestructive damage detection
    • PII S0964172697844631
    • Garcia G, Butler K, Stubbs N. Relative performance of clustering-based neural network and statistical pattern recognition models for nondestructive damage detection. Smart Materials and Structures 1997; 6:415-424. (Pubitemid 127631536)
    • (1997) Smart Materials and Structures , vol.6 , Issue.4 , pp. 415-424
    • Garcia, G.1    Butler, K.2    Stubbs, N.3
  • 18
    • 20444498674 scopus 로고    scopus 로고
    • An outlier analysis framework for impedance-based structural health monitoring
    • DOI 10.1016/j.jsv.2004.10.013, PII S0022460X04008235
    • Park G, Rutherford AC, Sohn H, Farrar CR. An outlier analysis framework for impedance-based structural health monitoring. Journal of Sound and Vibration 2005; 286:229-250. (Pubitemid 40822808)
    • (2005) Journal of Sound and Vibration , vol.286 , Issue.1-2 , pp. 229-250
    • Park, G.1    Rutherford, A.C.2    Sohn, H.3    Farrar, C.R.4
  • 19
    • 0035391479 scopus 로고    scopus 로고
    • Vibration-based damage detection using statistical process control
    • DOI 10.1006/mssp.2000.1323
    • Fugate ML, Sohn H, Farrar CR. Vibration-based damage detection using statistical process control. Mechanical Systems and Signal Processing 2001; 15:707-721. (Pubitemid 32732399)
    • (2001) Mechanical Systems and Signal Processing , vol.15 , Issue.4 , pp. 707-721
    • Fugate, M.L.1    Sohn, H.2    Farrar, C.R.3
  • 20
    • 0012456651 scopus 로고    scopus 로고
    • Visualisation and dimension reduction of acoustic emission data for damage detection
    • DOI 10.1106/UD4L-UPGC-WG29-A34L
    • Manson G, Worden K, Holford K, Pullin R. Visualisation and dimension reduction of acoustic emission data for damage detection. Journal of Intelligent Material Systems and Structures 2001; 12:529-536. (Pubitemid 33791269)
    • (2001) Journal of Intelligent Material Systems and Structures , vol.12 , Issue.8 , pp. 529-536
    • Manson, G.1    Worden, K.2    Holford, K.3    Pullin, R.4
  • 22
    • 0032188521 scopus 로고    scopus 로고
    • Damage characterization of carbon/carbon laminates using neural network techniques on AE signals
    • PII S0963869598000152
    • Philippidis TP, Nikolaidis VN, Anastassopoulos AA. Damage characterization of carbon/carbon laminates using neural network techniques on AE signals. NDT & E International 1998; 31:329-340. (Pubitemid 128431685)
    • (1998) NDT and E International , vol.31 , Issue.5 , pp. 329-340
    • Philippidis, T.P.1    Nikolaidis, V.N.2    Anastassopoulos, A.A.3
  • 23
    • 2442488123 scopus 로고    scopus 로고
    • Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers
    • Godin N, Huguet S, Gaertner R, Salmon L. Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers. NDT & E International 2004; 37:253-264.
    • (2004) NDT & E International , vol.37 , pp. 253-264
    • Godin, N.1    Huguet, S.2    Gaertner, R.3    Salmon, L.4
  • 24
    • 0008973877 scopus 로고
    • A self-learning neural net for ultrasonic signal analysis
    • Raju Damarla R, Karpur P, Bhagat PK. A self-learning neural net for ultrasonic signal analysis. Ultrasonics 1992; 30:317-324.
    • (1992) Ultrasonics , vol.30 , pp. 317-324
    • Raju Damarla, R.1    Karpur, P.2    Bhagat, P.K.3
  • 25
    • 0032136441 scopus 로고    scopus 로고
    • Detecting impact damage in a composite material with an optical fibre vibration sensor system
    • PII S096417269890595X
    • Doyle C, Fernando G. Detecting impact damage in a composite material with an optical fibre vibration sensor system. Smart Materials and Structures 1998; 7:543-549. (Pubitemid 128621289)
    • (1998) Smart Materials and Structures , vol.7 , Issue.4 , pp. 543-549
    • Doyle, C.1    Fernando, G.2
  • 26
    • 0030262134 scopus 로고    scopus 로고
    • Harmony theory yields robust machine fault-diagnostic systems based on learning vector quantization classifiers
    • DOI 10.1016/0952-1976(96)00042-5, PII S0952197696000425
    • Tse P, Wang DD, Atherton D. Harmony theory yields robust machine fault-diagnostic systems based on learning vector quantization classifiers. Engineering Applications of Artificial Intelligence 1996; 9:487-498. (Pubitemid 126364680)
    • (1996) Engineering Applications of Artificial Intelligence , vol.9 , Issue.5 , pp. 487-498
    • Tse, P.1    Wang, D.D.2    Atherton, D.3
  • 27
    • 27344460283 scopus 로고    scopus 로고
    • A comparative study of three artificial neural networks for the detection and classification of gear faults
    • DOI 10.1080/03081070500065726
    • Abu-Mahfouz IA. A comparative study of three artificial neural networks for the detection and classification of gear faults. International Journal of General Systems 2005; 34:261-277. (Pubitemid 41523698)
    • (2005) International Journal of General Systems , vol.34 , Issue.3 , pp. 261-277
    • Abu-Mahfouz, I.A.1
  • 28
    • 41549169072 scopus 로고    scopus 로고
    • Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition
    • Trendafilova I, Cartmell MP, Ostachowicz W. Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition. Journal of Sound and Vibration 2008; 313:560-566.
    • (2008) Journal of Sound and Vibration , vol.313 , pp. 560-566
    • Trendafilova, I.1    Cartmell, M.P.2    Ostachowicz, W.3
  • 30
    • 0003410290 scopus 로고
    • Princeton University Press: Princeton, NJ
    • Hamilton JD. Time Series Analysis. Princeton University Press: Princeton, NJ, 1994.
    • (1994) Time Series Analysis
    • Hamilton, J.D.1
  • 31
    • 0004168026 scopus 로고
    • (2nd edn). The MIT Press: Cambridge, MA
    • Harvey AC. Time Series Models (2nd edn). The MIT Press: Cambridge, MA, 1993.
    • (1993) Time Series Models
    • Harvey, A.C.1
  • 34
    • 84887006810 scopus 로고
    • Nonlinear mapping for data structure analysis
    • Sammon JJW. Nonlinear mapping for data structure analysis. IEEE Transactions on Computers 1969; C-18:401-409.
    • (1969) IEEE Transactions on Computers , vol.C-18 , pp. 401-409
    • Sammon, J.J.W.1
  • 35
    • 0013426686 scopus 로고    scopus 로고
    • On the use of self-organizing maps for clustering and visualization
    • Flexer A. On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis 2001; 5:373-384.
    • (2001) Intelligent Data Analysis , vol.5 , pp. 373-384
    • Flexer, A.1
  • 38
    • 0000712981 scopus 로고    scopus 로고
    • High precision estimation of seismic wave arrival times
    • Akaige H, Kitagawa G (eds). Springer: New York
    • Takanami T. High precision estimation of seismic wave arrival times. In The Practice of Time Series Analysis, Akaige H, Kitagawa G (eds). Springer: New York, 1999; 79-94.
    • (1999) The Practice of Time Series Analysis , pp. 79-94
    • Takanami, T.1
  • 39
    • 0016355478 scopus 로고
    • New look at the statistical model identification
    • Akaike H. New look at the statistical model identification. IEEE Transactions on Automatic Control 1974; AC-19:716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 41
    • 84856360212 scopus 로고    scopus 로고
    • ASCE Structural Health Monitoring Committee. (Available from
    • ASCE Structural Health Monitoring Committee. (Available from: http://cive.seas.wustl.edu/wusceel/asce.shm/.)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.