-
1
-
-
0041857920
-
Nonparametric Estimators which can be 'Plugged-In
-
J. P. Bickel and Y. Ritov, "Nonparametric Estimators which can be 'Plugged-In'," Ann. Statist. 31, 1033-1053 (2003).
-
(2003)
Ann. Statist.
, vol.31
, pp. 1033-1053
-
-
Bickel, J.P.1
Ritov, Y.2
-
2
-
-
18844378634
-
Concentration Inequalities for Sub-Additive Functions Using the Entropy Method
-
E. Giné, C. Houdré, and D. Nualart (Eds.), Boston: Birkhäuser
-
O. Bousquet, "Concentration Inequalities for Sub-Additive Functions Using the Entropy Method", in: Progress in Probability, Vol. 56: Stochastic Inequalities and Applications, Ed. by E. Giné, C. Houdré, and D. Nualart (Birkhäuser, Boston, 2003), pp. 213-247.
-
(2003)
Progress in Probability, Vol. 56: Stochastic Inequalities and Applications
, pp. 213-247
-
-
Bousquet, O.1
-
3
-
-
33744800008
-
Penalized Maximum Likelihood and Semiparametric Second-Order Efficiency
-
A. S. Dalalyan, G. K. Golubev, and A. B. Tsybakov, "Penalized Maximum Likelihood and Semiparametric Second-Order Efficiency", Ann. Statist. 34, 169-201 (2006).
-
(2006)
Ann. Statist.
, vol.34
, pp. 169-201
-
-
Dalalyan, A.S.1
Golubev, G.K.2
Tsybakov, A.B.3
-
6
-
-
0030504418
-
Density Estimation by Wavelet Thresholding
-
D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, "Density Estimation by Wavelet Thresholding", Ann. Statist. 24, 508-539 (1996).
-
(1996)
Ann. Statist.
, vol.24
, pp. 508-539
-
-
Donoho, D.L.1
Johnstone, I.M.2
Kerkyacharian, G.3
Picard, D.4
-
7
-
-
49749110419
-
On Local U-Statistic Processes and the Estimation of Densities of Functions of Several Sample Variables
-
E. Ginée and D. M. Mason, "On Local U-Statistic Processes and the Estimation of Densities of Functions of Several Sample Variables", Ann. Statist. 35, 1105-1145 (2007).
-
(2007)
Ann. Statist.
, vol.35
, pp. 1105-1145
-
-
Ginée, E.1
Mason, D.M.2
-
8
-
-
42149093784
-
Uniform Central Limit Theorems for Kernel Density Estimators
-
E. Giné and R. Nickl, "Uniform Central Limit Theorems for Kernel Density Estimators", Probab. Theory Related Fields, 141, 333-387 (2008).
-
(2008)
Probab. Theory Related Fields
, vol.141
, pp. 333-387
-
-
Giné, E.1
Nickl, R.2
-
9
-
-
84859500224
-
An Exponential Inequality for the Distribution Function of the Kernel Density Estimator, with Applications to Adaptive Estimation
-
Theory Related Fields. (in press)
-
E. Giné and R. Nickl, "An Exponential Inequality for the Distribution Function of the Kernel Density Estimator, with Applications to Adaptive Estimation", Probab. Theory Related Fields, 2008 (in press).
-
(2008)
Probab.
-
-
Giné, E.1
Nickl, R.2
-
10
-
-
0001678367
-
Empirical Processes Indexed by Lipschitz Functions
-
E. Giné and J. Zinn, "Empirical Processes Indexed by Lipschitz Functions", Ann. Probab. 14, 1329-1338 (1986).
-
(1986)
Ann. Probab.
, vol.14
, pp. 1329-1338
-
-
Giné, E.1
Zinn, J.2
-
11
-
-
11844286069
-
Distribution Function Estimation: Adaptive Smoothing
-
G. K. Golubev and B. Y. Levit, "Distribution Function Estimation: Adaptive Smoothing", Math. Methods Statist. 5, 383-403 (1996).
-
(1996)
Math.Methods Statist.
, vol.5
, pp. 383-403
-
-
Golubev, G.K.1
Levit, B.Y.2
-
12
-
-
33747354349
-
On Minimax Density Estimation on ℝ
-
A. Juditsky and S. Lambert-Lacroix, "OnMinimaxDensity Estimation on ℝ", Bernoulli 10, 187-220 (2004).
-
(2004)
Bernoulli
, vol.10
, pp. 187-220
-
-
Juditsky, A.1
Lambert-Lacroix, S.2
-
14
-
-
0001066342
-
Asymptotically Minimax Adaptive Estimation. I. Upper Bounds. Optimally Adaptive Estimates
-
O. V. Lepski, "Asymptotically Minimax Adaptive Estimation. I. Upper Bounds. Optimally Adaptive Estimates", Theory Probab. Appl. 36, 682-697 (1991).
-
(1991)
Theory Probab. Appl.
, vol.36
, pp. 682-697
-
-
Lepski, O.V.1
-
15
-
-
0031327277
-
Optimal PointwiseAdaptiveMethods inNonparametric Estimation
-
O. V. Lepski and V. G. Spokoiny, "Optimal PointwiseAdaptiveMethods inNonparametric Estimation", Ann. Statist. 25, 2512-2546 (1997).
-
(1997)
Ann. Statist.
, vol.25
, pp. 2512-2546
-
-
Lepski, O.V.1
Spokoiny, V.G.2
-
16
-
-
34249036798
-
Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov-and Sobolev-Type
-
R. Nickl and B. M. Pötscher, "Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov-and Sobolev-Type", J. Theoret. Probab. 20, 177-199 (2007).
-
(2007)
J. Theoret. Probab.
, vol.20
, pp. 177-199
-
-
Nickl, R.1
Pötscher, B.M.2
-
17
-
-
0030489977
-
New Concentration Inequalities in Product Spaces
-
M. Talagrand, "New Concentration Inequalities in Product Spaces", Invent. Math. 126, 505-563 (1996).
-
(1996)
Invent. Math.
, vol.126
, pp. 505-563
-
-
Talagrand, M.1
|