메뉴 건너뛰기




Volumn 17, Issue 2, 2008, Pages 113-122

Adaptation on the space of finite signed measures

Author keywords

adaptive estimation; bounded Lipschitz metric; exponential inequality; kernel density estimator; L 1 loss; total variation loss

Indexed keywords


EID: 84856250332     PISSN: 10665307     EISSN: 19348045     Source Type: Journal    
DOI: 10.3103/S1066530708020026     Document Type: Article
Times cited : (3)

References (18)
  • 1
    • 0041857920 scopus 로고    scopus 로고
    • Nonparametric Estimators which can be 'Plugged-In
    • J. P. Bickel and Y. Ritov, "Nonparametric Estimators which can be 'Plugged-In'," Ann. Statist. 31, 1033-1053 (2003).
    • (2003) Ann. Statist. , vol.31 , pp. 1033-1053
    • Bickel, J.P.1    Ritov, Y.2
  • 2
    • 18844378634 scopus 로고    scopus 로고
    • Concentration Inequalities for Sub-Additive Functions Using the Entropy Method
    • E. Giné, C. Houdré, and D. Nualart (Eds.), Boston: Birkhäuser
    • O. Bousquet, "Concentration Inequalities for Sub-Additive Functions Using the Entropy Method", in: Progress in Probability, Vol. 56: Stochastic Inequalities and Applications, Ed. by E. Giné, C. Houdré, and D. Nualart (Birkhäuser, Boston, 2003), pp. 213-247.
    • (2003) Progress in Probability, Vol. 56: Stochastic Inequalities and Applications , pp. 213-247
    • Bousquet, O.1
  • 3
    • 33744800008 scopus 로고    scopus 로고
    • Penalized Maximum Likelihood and Semiparametric Second-Order Efficiency
    • A. S. Dalalyan, G. K. Golubev, and A. B. Tsybakov, "Penalized Maximum Likelihood and Semiparametric Second-Order Efficiency", Ann. Statist. 34, 169-201 (2006).
    • (2006) Ann. Statist. , vol.34 , pp. 169-201
    • Dalalyan, A.S.1    Golubev, G.K.2    Tsybakov, A.B.3
  • 7
    • 49749110419 scopus 로고    scopus 로고
    • On Local U-Statistic Processes and the Estimation of Densities of Functions of Several Sample Variables
    • E. Ginée and D. M. Mason, "On Local U-Statistic Processes and the Estimation of Densities of Functions of Several Sample Variables", Ann. Statist. 35, 1105-1145 (2007).
    • (2007) Ann. Statist. , vol.35 , pp. 1105-1145
    • Ginée, E.1    Mason, D.M.2
  • 8
    • 42149093784 scopus 로고    scopus 로고
    • Uniform Central Limit Theorems for Kernel Density Estimators
    • E. Giné and R. Nickl, "Uniform Central Limit Theorems for Kernel Density Estimators", Probab. Theory Related Fields, 141, 333-387 (2008).
    • (2008) Probab. Theory Related Fields , vol.141 , pp. 333-387
    • Giné, E.1    Nickl, R.2
  • 9
    • 84859500224 scopus 로고    scopus 로고
    • An Exponential Inequality for the Distribution Function of the Kernel Density Estimator, with Applications to Adaptive Estimation
    • Theory Related Fields. (in press)
    • E. Giné and R. Nickl, "An Exponential Inequality for the Distribution Function of the Kernel Density Estimator, with Applications to Adaptive Estimation", Probab. Theory Related Fields, 2008 (in press).
    • (2008) Probab.
    • Giné, E.1    Nickl, R.2
  • 10
    • 0001678367 scopus 로고
    • Empirical Processes Indexed by Lipschitz Functions
    • E. Giné and J. Zinn, "Empirical Processes Indexed by Lipschitz Functions", Ann. Probab. 14, 1329-1338 (1986).
    • (1986) Ann. Probab. , vol.14 , pp. 1329-1338
    • Giné, E.1    Zinn, J.2
  • 11
    • 11844286069 scopus 로고    scopus 로고
    • Distribution Function Estimation: Adaptive Smoothing
    • G. K. Golubev and B. Y. Levit, "Distribution Function Estimation: Adaptive Smoothing", Math. Methods Statist. 5, 383-403 (1996).
    • (1996) Math.Methods Statist. , vol.5 , pp. 383-403
    • Golubev, G.K.1    Levit, B.Y.2
  • 12
    • 33747354349 scopus 로고    scopus 로고
    • On Minimax Density Estimation on ℝ
    • A. Juditsky and S. Lambert-Lacroix, "OnMinimaxDensity Estimation on ℝ", Bernoulli 10, 187-220 (2004).
    • (2004) Bernoulli , vol.10 , pp. 187-220
    • Juditsky, A.1    Lambert-Lacroix, S.2
  • 14
    • 0001066342 scopus 로고
    • Asymptotically Minimax Adaptive Estimation. I. Upper Bounds. Optimally Adaptive Estimates
    • O. V. Lepski, "Asymptotically Minimax Adaptive Estimation. I. Upper Bounds. Optimally Adaptive Estimates", Theory Probab. Appl. 36, 682-697 (1991).
    • (1991) Theory Probab. Appl. , vol.36 , pp. 682-697
    • Lepski, O.V.1
  • 15
    • 0031327277 scopus 로고    scopus 로고
    • Optimal PointwiseAdaptiveMethods inNonparametric Estimation
    • O. V. Lepski and V. G. Spokoiny, "Optimal PointwiseAdaptiveMethods inNonparametric Estimation", Ann. Statist. 25, 2512-2546 (1997).
    • (1997) Ann. Statist. , vol.25 , pp. 2512-2546
    • Lepski, O.V.1    Spokoiny, V.G.2
  • 16
    • 34249036798 scopus 로고    scopus 로고
    • Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov-and Sobolev-Type
    • R. Nickl and B. M. Pötscher, "Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov-and Sobolev-Type", J. Theoret. Probab. 20, 177-199 (2007).
    • (2007) J. Theoret. Probab. , vol.20 , pp. 177-199
    • Nickl, R.1    Pötscher, B.M.2
  • 17
    • 0030489977 scopus 로고    scopus 로고
    • New Concentration Inequalities in Product Spaces
    • M. Talagrand, "New Concentration Inequalities in Product Spaces", Invent. Math. 126, 505-563 (1996).
    • (1996) Invent. Math. , vol.126 , pp. 505-563
    • Talagrand, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.