-
1
-
-
67349139269
-
Examining the relationships among background variables and academic performance of first year accounting students at an Irish University
-
December
-
Byrne M, Flood B. Examining the relationships among background variables and academic performance of first year accounting students at an Irish University, Journal of Accounting Education, Volume 26, Issue 4, December 2008, Pages 202-212.
-
(2008)
Journal of Accounting Education
, vol.26
, Issue.4
, pp. 202-212
-
-
Byrne, M.1
Flood, B.2
-
2
-
-
78651238304
-
Predicting Pre-university Student's Mathematics Achievement. Procedia - Social and Behavioral Sciences
-
Chun-Teck Lye, Lik-Neo Ng, Mohd Daud Hassan, Wei-Wei Goh, Check-Yee Law, Noradzilah Ismail (2010). Predicting Pre-university Student's Mathematics Achievement. Procedia - Social and Behavioral Sciences, Volume 8, International Conference on Mathematics Education Research 2010 (ICMER 2010), Pages 299-306
-
(2010)
International Conference on Mathematics Education Research 2010 (ICMER 2010)
, vol.8
, pp. 299-306
-
-
Lye, C.-T.1
Ng, L.-N.2
Hassan, M.D.3
Goh, W.-W.4
Law, C.-Y.5
Ismail, N.6
-
3
-
-
77955155102
-
Predicting Students Drop Out: A Case Study
-
Dekker, G.W., Pechenizkiy, M., Vleeshouwers, J.M. (2009). Predicting Students Drop Out: A Case Study. In International Conference on Educational Data Mining, Cordoba, Spain, 41-50.
-
(2009)
International Conference on Educational Data Mining, Cordoba, Spain
, pp. 41-50
-
-
Dekker, G.W.1
Pechenizkiy, M.2
Vleeshouwers, J.M.3
-
4
-
-
0011671809
-
La predicción del rendimiento académico: Regresión lineal versus regresión logística
-
García, M.V., Alvarado, J.M. y Jiménez, A. (2000). La predicción del rendimiento académico: Regresión lineal versus regresión logística. Psicothema, 12, 248-252.
-
(2000)
Psicothema
, vol.12
, pp. 248-252
-
-
García, M.V.1
Alvarado, J.M.2
Jiménez, A.3
-
6
-
-
85068297702
-
Who Succeeds at University? Factors predicting academic performance in first year Australian university students
-
Kirsten McKenzie; Robert Schweitzer. Who Succeeds at University? Factors predicting academic performance in first year Australian university students. Higher Education Research & Development, 1469-8366, Volume 20, Issue 1, 2001, Pages 21-33
-
(2001)
Higher Education Research & Development, 1469-8366
, vol.20
, Issue.1
, pp. 21-33
-
-
McKenzie, K.1
Schweitzer, R.2
-
7
-
-
69949084898
-
Predicting performance of first year engineering students and the importance of assessment tools therein
-
Lee, S., Harrison, M., Pell, G., & Robinson, C. (2008). Predicting performance of first year engineering students and the importance of assessment tools therein. Engineering Education: Journal of the Higher Education Academy Engineering Subject Centre, 3(1).
-
(2008)
Engineering Education: Journal of the Higher Education Academy Engineering Subject Centre
, vol.3
, Issue.1
-
-
Lee, S.1
Harrison, M.2
Pell, G.3
Robinson, C.4
-
8
-
-
84946212876
-
-
accessed 25.09.2011
-
Mierswa, I.: RapidMiner. http://rapid-i.com. accessed 25.09.2011.
-
RapidMiner
-
-
Mierswa, I.1
-
9
-
-
0040685811
-
An expert system approach to graduate school admission decisions and academic performance prediction
-
PII S0305048398000085
-
Moore J. S. An expert system approach to graduate school admission decisions and academic performance prediction, Omega, Volume 26, Issue 5, October 1998, Pages 659-670. (Pubitemid 128340841)
-
(1998)
Omega
, vol.26
, Issue.5
, pp. 659-670
-
-
Moore, J.S.1
-
11
-
-
77958151954
-
Predicting Students' Academic Performance using Artificial Neural Network: A Case Study of an Engineering Course
-
Oladokun, V.O., A.T. Adebanjo, and O.E. Charles-Owaba. 2008. "Predicting Students' Academic Performance using Artificial Neural Network: A Case Study of an Engineering Course". Pacific Journal of Science and Technology. 9(1):72-79.
-
(2008)
Pacific Journal of Science and Technology
, vol.9
, Issue.1
, pp. 72-79
-
-
Oladokun, V.O.1
Adebanjo, A.T.2
Charles-Owaba, O.E.3
-
12
-
-
60249096007
-
A study of academic performance of business school graduates using neural network and statistical techniques
-
May
-
Paliwal M.,Kumar U. A. A study of academic performance of business school graduates using neural network and statistical techniques, Expert Systems with Applications, Volume 36, Issue 4, May 2009, Pages 7865-7872.
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.4
, pp. 7865-7872
-
-
Paliwal, M.1
Kumar, U.A.2
-
13
-
-
77958153220
-
Educational data mining: A review of the state-of-the-art
-
Romero, C., Ventura, S.: Educational data mining: a review of the state-of-the-art. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 40(6), 601-618 (2010)
-
(2010)
IEEE Trans. Syst. Man Cybern. C Appl. Rev.
, vol.40
, Issue.6
, pp. 601-618
-
-
Romero, C.1
Ventura, S.2
-
14
-
-
51949102480
-
Predicting Academic Performance by Data Mining Methods
-
First published on: 26 June 2007 (iFirst)
-
Vandamme, J. -P., Meskens, N. and Superby, J. -F.(2007) 'Predicting Academic Performance by Data Mining Methods', Education Economics, 15: 4, 405-419, First published on: 26 June 2007 (iFirst)
-
(2007)
Education Economics
, vol.15
-
-
Vandamme, J.-P.1
Meskens, N.2
Superby, J.-F.3
-
15
-
-
37549018049
-
Top 10 Algorithms in Data Mining,"
-
X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A.F.M. Ng, B. Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, and D. Steinberg, "Top 10 Algorithms in Data Mining,"Knowledge and Information Systems, vol. 14, no. 1, pp. 1-37, 2008.
-
(2008)
Knowledge and Information Systems
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.F.M.8
Liu, B.9
Yu, P.S.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
|