-
5
-
-
81855226598
-
-
Single electron transfers may be categorized as outersphere and innersphere processes according to whether they are not or whether they are accompanied in a concerted manner with breaking or formation of bonds. The classification originates from the electron transfer chemistry of metallic complexes, 3b making a distinction between the reactions where one electron but no ligand is transferred and those where a ligand is transferred concertedly with one electron, which amounts for the transfer of an atom (or of a group of atoms). The notion was extended afterwards 3c according to the definition above so as to include all kinds of molecules, including organic molecules
-
C. Costentin V. Hajj C. Louault M. Robert J.-M. Savéant J. Am. Chem. Soc. 2011 133 19160 19167
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 19160-19167
-
-
Costentin, C.1
Hajj, V.2
Louault, C.3
Robert, M.4
Savéant, J.-M.5
-
7
-
-
77956772881
-
Single Electron Transfer and Nucleophilic Substitution
-
in, ed. D. Bethel, Academic Press, New York, 26, 1-130
-
J.-M. Savéant, Single Electron Transfer and Nucleophilic Substitution, in Advances in Physical Organic Chemistry, ed., D. Bethel, Academic Press, New York, 1990, vol. 26, pp. 1-130
-
(1990)
Advances in Physical Organic Chemistry
-
-
Savéant, J.-M.1
-
17
-
-
0001205920
-
-
Another approach deals with reactants anchored to the electrode surface. This strategy was applied to the reduction of ferrocene attached to the electrode surface by a long chain. 11b The pre-exponential factor is then much smaller than in the preceding cases, because of electron tunneling over a large distance. The small value of Z thus allows its determination together with its organization energy at a given temperature. The validity of the Hush-Marcus kinetic law could then be tested after introduction of the contribution of all electronic states of electrons in the electrode, which wipes out the inverted region predicted by eqn (1) 11c
-
J.-M. Savéant D. Tessier J. Phys. Chem. 1978 82 1723 1727
-
(1978)
J. Phys. Chem.
, vol.82
, pp. 1723-1727
-
-
Savéant, J.-M.1
Tessier, D.2
-
19
-
-
0003030312
-
Present State of the Theory of Oxidation-Reduction in Solution (Bulk and Electrode Reactions)
-
in, ed. Delahay and C. W. Tobias, Wiley, New York, 250-371
-
V. G. Levich, Present State of the Theory of Oxidation-Reduction in Solution (Bulk and Electrode Reactions), in Advances in Electrochemistry and Electrochemical Engineering, ed., P. Delahay, and, C. W. Tobias, Wiley, New York, 1955, pp. 250-371
-
(1955)
Advances in Electrochemistry and Electrochemical Engineering
-
-
Levich, V.G.1
-
20
-
-
33646254381
-
-
Two other determinations of the reorganization energy from temperature variations have been reported, assuming the validity of the Marcus-Hush model 13b,c
-
S. W. Feldberg N. Sutin Chem. Phys. 2006 324 216 225
-
(2006)
Chem. Phys.
, vol.324
, pp. 216-225
-
-
Feldberg, S.W.1
Sutin, N.2
-
23
-
-
0037434620
-
-
1/2 (v: scan rate, D: reactant diffusion coefficient) indicating that large rate constants require large scan rates and vice versa. 14d,e Since the standard rate constants are not very high (see Fig. 2), the scan rate need not be very high (see Fig. 1)
-
M. Rudolph J. Electroanal. Chem. 2003 543 23 39
-
(2003)
J. Electroanal. Chem.
, vol.543
, pp. 23-39
-
-
Rudolph, M.1
-
29
-
-
15744375697
-
-
Gaussian, Inc., Wallingford, CT, Several methods based on the same principles have been proposed and applied at various levels of calculation 20b-d
-
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004
-
(2004)
Gaussian 03, Revision C.02
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery, Jr.J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Bakken, V.36
Adamo, C.37
Jaramillo, J.38
Gomperts, R.39
Stratmann, R.E.40
Yazyev, O.41
Austin, A.J.42
Cammi, R.43
Pomelli, C.44
Ochterski, J.W.45
Ayala, P.Y.46
Morokuma, K.47
Voth, G.A.48
Salvador, P.49
Dannenberg, J.J.50
Zakrzewski, V.G.51
Dapprich, S.52
Daniels, A.D.53
Strain, M.C.54
Farkas, O.55
Malick, D.K.56
Rabuck, A.D.57
Raghavachari, K.58
Foresman, J.B.59
Ortiz, J.V.60
Cui, Q.61
Baboul, A.G.62
Clifford, S.63
Cioslowski, J.64
Stefanov, B.B.65
Liu, G.66
Liashenko, A.67
Piskorz, P.68
Komaromi, I.69
Martin, R.L.70
Fox, D.J.71
Keith, T.72
Al-Laham, M.A.73
Peng, C.Y.74
Nanayakkara, A.75
Challacombe, M.76
Gill, P.M.W.77
Johnson, B.78
Chen, W.79
Wong, M.W.80
Gonzalez, C.81
Pople, J.A.82
more..
|