메뉴 건너뛰기




Volumn 137, Issue 12, 2011, Pages 1209-1214

Applications of radial-basis function and generalized regression neural networks for modeling of coagulant dosage in a drinking water-treatment plant: Comparative study

Author keywords

Coagulant dosage; Coagulation; Comparative studies; Drinking water; Generalized regression neural network; Modeling; Neural networks; Radial basis function neural networks; Water treatment

Indexed keywords

ALGERIA; ARTIFICIAL NEURAL NETWORK; CHEMICAL PHENOMENAS; COAGULANT DOSAGE; COAGULATION PROCESS; COMPARATIVE STUDIES; CONVENTIONAL METHODS; GENERALIZED REGRESSION NEURAL NETWORKS; JAR TEST; RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL BASIS FUNCTIONS; RAW WATER;

EID: 84855958700     PISSN: 07339372     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)EE.1943-7870.0000435     Document Type: Article
Times cited : (55)

References (23)
  • 2
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • 0891-2513.
    • Broomhead, D. S., and Lowe, D. (1988). Multivariable functional interpolation and adaptive networks.. Complex Syst. 0891-2513, 2, 321-355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 3
    • 33745813161 scopus 로고    scopus 로고
    • Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modelling
    • DOI 10.1016/j.mcm.2006.02.002, PII S0895717706000343
    • Celikoglu, H. B. (2006). Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modeling.. Math. Comput. Model. 0895-7177, 44 (7-8), 640-658. 10.1016/j.mcm.2006.02.002 (Pubitemid 44038177)
    • (2006) Mathematical and Computer Modelling , vol.44 , Issue.7-8 , pp. 640-658
    • Celikoglu, H.B.1
  • 4
    • 33750052607 scopus 로고    scopus 로고
    • Public transportation trip flow modeling with generalized regression neural networks
    • DOI 10.1016/j.advengsoft.2006.08.003, PII S0965997806001153
    • Celikoglu, H. B., and Cigizoglu, H. K. (2007). Public transportation trip flow modelling with generalized regression neural networks.. Adv. Eng. Software 0965-9978, 38 (2), 71-79. 10.1016/j.advengsoft.2006.08.003 (Pubitemid 44584687)
    • (2007) Advances in Engineering Software , vol.38 , Issue.2 , pp. 71-79
    • Celikoglu, H.B.1    Cigizoglu, H.K.2
  • 5
    • 33845257121 scopus 로고    scopus 로고
    • Fuzzy model identification and control system design for coagulation chemical dosing of potable water
    • DOI 10.2166/ws.2006.782, 5th World Water Congress: Drinking Water Treatment Processes
    • Chen, C. L., and Hou, P. L. (2006). Fuzzy model identification and control system design for coagulation chemical dosing of potable water.. Water Sci. Technol.: Water Supply 1606-9749, 6 (3), 97-104. 10.2166/ws.2006.782 (Pubitemid 44861678)
    • (2006) Water Science and Technology: Water Supply , vol.6 , Issue.3 , pp. 97-104
    • Chen, C.-L.1    Hou, P.-L.2
  • 6
    • 0027337164 scopus 로고
    • Coagulation in drinking water treatment: Particles, organics and coagulants
    • Control of Organic Material by Coagulation and Floc-Separation Processes
    • Edzwald, J. K. (1993). Coagulation in drinking water treatment: Particles, organics and coagulants.. Water Sci. Technol. 0273-1223, 27 (11), 21-35. (Pubitemid 23244843)
    • (1993) Water Science and Technology , vol.27 , Issue.11 , pp. 21-35
    • Edzwald, J.K.1
  • 7
    • 0031258664 scopus 로고    scopus 로고
    • Modelling of coagulant dosage in a water treatment plant
    • PII S0954181097000100
    • Gagnon, C., Grandjean, B. P. A., and Thibault, J. (1997). Modelling of coagulant dosage in a water treatment plant.. Artif. Intell. Eng. 0954-1810, 11 (4), 401-404. 10.1016/S0954-1810(97)00010-1 (Pubitemid 127416036)
    • (1997) Artificial Intelligence in Engineering , vol.11 , Issue.4 , pp. 401-404
    • Gagnon, C.1    Grandjean, B.P.A.2    Thibault, J.3
  • 10
    • 0037151316 scopus 로고    scopus 로고
    • The application of generalized regression neural network in the modeling and optimization of aspirin extended release tablets with Eudragit® RS PO as matrix substance
    • DOI 10.1016/S0168-3659(02)00044-5, PII S0168365902000445
    • Ibrić, S., Jovanović, M., Djurić, Z., Parojić, J., and Solomun, L. (2002). The application of generalized regression neural network in the modelling and optimization of aspirin extended release tablets with Eudragit RS PO as matrix substance.. J. Control. Release 0168-3659, 82 (2-3), 213-222. 10.1016/S0168-3659(02)00044-5 (Pubitemid 34880179)
    • (2002) Journal of Controlled Release , vol.82 , Issue.2-3 , pp. 213-222
    • Ibri, S.1    Jovanovi, M.2    Djuri, Z.3    Parojci, J.4    Solomun, L.5
  • 11
    • 0034284680 scopus 로고    scopus 로고
    • The effects of data preprocessing in the determination of coagulant dosing rate
    • DOI 10.1016/S0043-1354(00)00067-1, PII S0043135400000671
    • Joo, D. S., Choi, D. J., and Park, H. (2000). The effects of data preprocessing in the determination of coagulant dosing rate.. Water Res. 0043-1354, 34 (13), 3295-3302. 10.1016/S0043-1354(00)00067-1 (Pubitemid 30618927)
    • (2000) Water Research , vol.34 , Issue.13 , pp. 3295-3302
    • Joo, D.-S.1    Choi, D.-J.2    Park, H.3
  • 12
    • 2342512223 scopus 로고    scopus 로고
    • Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN)
    • DOI 10.1016/j.bej.2003.08.009, PII S1369703X03002213
    • Kulkarni, S. G., Chaudhary, A. K., Nandi, S., Tambe, S. S., and Kulkarni, B. D. (2004). Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN).. Biochem. Eng. J. 1369-703X, 18 (3), 193-210. 10.1016/j.bej.2003.08.009 (Pubitemid 38581204)
    • (2004) Biochemical Engineering Journal , vol.18 , Issue.3 , pp. 193-210
    • Kulkarni, S.G.1    Chaudhary, A.K.2    Nandi, S.3    Tambe, S.S.4    Kulkarni, B.D.5
  • 13
    • 33750457698 scopus 로고    scopus 로고
    • A neural software sensor for online prediction of coagulant dosage in a drinking water treatment plant
    • DOI 10.1191/0142331205tm141oa
    • Larmrini, B., Benhammou, A., Le Lann, M. V., and Karama, A. (2005). A neural software sensor for online prediction of coagulant dosage in a drinking water treatment plant.. Trans. Inst. Meas. Control (London) 0142-3312, 27 (3), 195-213. 10.1191/0142331205tm141oa (Pubitemid 44651932)
    • (2005) Transactions of the Institute of Measurement and Control , vol.27 , Issue.3 , pp. 195-213
    • Lamrini, B.1    Benhammou, A.2    Le Lann, M.-V.3    Karama, A.4
  • 14
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • 0740-7467.
    • Lippmann, R. P. (1987). An introduction to computing with neural nets.. IEEE ASSP Mag. 0740-7467, 3 (4), 4-22.
    • (1987) IEEE ASSP Mag. , vol.3 , Issue.4 , pp. 4-22
    • Lippmann, R.P.1
  • 15
    • 1642336479 scopus 로고    scopus 로고
    • Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters
    • DOI 10.1016/S1364-8152(03)00163-4, PII S1364815203001634
    • Maier, H. R., Morgan, N., and Chow, C. W. K. (2004). Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters.. Environ. Model. Software 1364-8152, 19 (5), 485-494. 10.1016/S1364-8152(03)00163-4 (Pubitemid 38355873)
    • (2004) Environmental Modelling and Software , vol.19 , Issue.5 , pp. 485-494
    • Maier, H.R.1    Morgan, N.2    Chow, C.W.K.3
  • 16
    • 54949099172 scopus 로고    scopus 로고
    • MathWorks. (Mar. 7, 2005).
    • MathWorks. (2005). Matlab Programming. http://www.mathworks.com (Mar. 7, 2005).
    • (2005) Matlab Programming
  • 17
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • 0899-7667, , 10.1162/neco.1991.3.2.246
    • Park, J., and Sandberg, I. W. (1991). Universal approximation using radial basis function networks.. Neural Comput. 0899-7667, 3 (2), 246-257. 10.1162/neco.1991.3.2.246
    • (1991) Neural Comput. , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 18
    • 57649199697 scopus 로고    scopus 로고
    • Decision model for coagulant dosage using genetic programming and multivariate statistical analysis for coagulation/flocculation at water treatment process
    • 0256-1115, , 10.1007/s11814-008-0225-9
    • Park, S., Bae, H., and Kim, C. (2008). Decision model for coagulant dosage using genetic programming and multivariate statistical analysis for coagulation/flocculation at water treatment process.. Korean J. Chem. Eng. 0256-1115, 25 (6), 1372-1376. 10.1007/s11814-008-0225-9
    • (2008) Korean J. Chem. Eng. , vol.25 , Issue.6 , pp. 1372-1376
    • Park, S.1    Bae, H.2    Kim, C.3
  • 19
    • 77649284191 scopus 로고    scopus 로고
    • Development of process inverse neural network model to determine the required alum dosage at Segama Water Treatment Plant Sabah, Malaysia
    • , Vol., Elsevier, Amsterdam, Netherlands..
    • Robenson, A., Abd. Shukor, S. R., and Aziz, N. (2009). Development of process inverse neural network model to determine the required alum dosage at Segama Water Treatment Plant Sabah, Malaysia.. Computer aided chemical engineering, Vol. 27, Elsevier, Amsterdam, Netherlands. 525-530.
    • (2009) Computer Aided Chemical Engineering , vol.27 , pp. 525-530
    • Robenson, A.1    Abd. Shukor, S.R.2    Aziz, N.3
  • 20
    • 0026254768 scopus 로고
    • A general regression neural network
    • 0263-8762, 10.1016/j.cherd.2010.12.004
    • Specht, D. F. (1991). A general regression neural network.. IEEE Trans. Neural Networks 0263-8762, 1126-1135. 10.1016/j.cherd.2010.12.004
    • (1991) IEEE Trans. Neural Networks , pp. 1126-1135
    • Specht, D.F.1
  • 21
    • 0032800801 scopus 로고    scopus 로고
    • Empirical mathematical models and artificial neural networks for the determination of alum doses for treatment of southern Australian surface waters
    • DOI 10.1046/j.1365-2087.1999.00135.x
    • Van Leeuwen, J., Chow, C. W. K., Bursill, D., and Drikas, M. (1999). Empirical mathematical models and artificial neural networks for the determination of alum doses for treatment of southern Australian surface waters.. Aqua 0003-7214, 48 (3), 115-127. 10.1046/j.1365-2087.1999.00135.x (Pubitemid 29332162)
    • (1999) Aqua , vol.48 , Issue.3 , pp. 115-127
    • Van Leeuwen, J.1    Chow, C.W.K.2    Bursill, D.3    Drikas, M.4
  • 22
    • 54049119210 scopus 로고    scopus 로고
    • Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network based fuzzy inference system
    • 0952-1976, , 10.1016/j.engappai.2008.03.015
    • Wu, G. D., and Lo, S. L. (2008). Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network based fuzzy inference system.. Eng. Appl. Artif. Intell. 0952-1976, 21 (8), 1189-1195. 10.1016/j.engappai.2008.03.015
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , Issue.8 , pp. 1189-1195
    • Wu, G.D.1    Lo, S.L.2
  • 23
    • 77950187746 scopus 로고    scopus 로고
    • Effects of data normalization and inherent-factor on decision of optimal coagulant dosage in water treatment by artificial neural network
    • 0957-4174, , 10.1016/j.eswa.2009.12.016
    • Wu, G. D., and Lo, S. L. (2010). Effects of data normalization and inherent-factor on decision of optimal coagulant dosage in water treatment by artificial neural network.. Expert Syst. Appl. 0957-4174, 37 (7), 4974-4983. 10.1016/j.eswa.2009.12.016
    • (2010) Expert Syst. Appl. , vol.37 , Issue.7 , pp. 4974-4983
    • Wu, G.D.1    Lo, S.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.