메뉴 건너뛰기




Volumn 21, Issue 8, 2008, Pages 1189-1195

Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system

Author keywords

Adaptive network based fuzzy inference system; Artificial neural networks; Coagulant dosage; Water treatment

Indexed keywords

ALUMINA; BACKPROPAGATION; CHEMICAL WATER TREATMENT; CHEMICALS REMOVAL (WATER TREATMENT); COAGULATION; EFFLUENTS; FORECASTING; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; HEAVY WATER; INTELLIGENT CONTROL; NETWORK PROTOCOLS; POTABLE WATER; SENSOR NETWORKS; SURFACE WATERS; TURBIDITY; VEGETATION; WATER QUALITY; WATER RECYCLING; WATER TREATMENT; WATER TREATMENT PLANTS;

EID: 54049119210     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2008.03.015     Document Type: Article
Times cited : (114)

References (18)
  • 1
    • 33646733607 scopus 로고    scopus 로고
    • Decision algorithm based on data mining for coagulant type and dosage in water treatment systems
    • Bae H., Kim S., and Kim Y.J. Decision algorithm based on data mining for coagulant type and dosage in water treatment systems. Water Science and Technology 53 4-5 (2006) 321-329
    • (2006) Water Science and Technology , vol.53 , Issue.4-5 , pp. 321-329
    • Bae, H.1    Kim, S.2    Kim, Y.J.3
  • 2
    • 0032773112 scopus 로고    scopus 로고
    • Development of a fullscale artificial neural network model for the removal of natural organic matter by enhanced coagulation
    • Baxter C.W., Stanley S.J., and Zhang Q. Development of a fullscale artificial neural network model for the removal of natural organic matter by enhanced coagulation. Journal of Water Supply Research and Technology-Aqua 48 4 (1999) 129-136
    • (1999) Journal of Water Supply Research and Technology-Aqua , vol.48 , Issue.4 , pp. 129-136
    • Baxter, C.W.1    Stanley, S.J.2    Zhang, Q.3
  • 4
    • 33845257121 scopus 로고    scopus 로고
    • Fuzzy model identification and control system design for coagulation chemical dosing of potable water
    • Chen C.-L., and Hou P.-L. Fuzzy model identification and control system design for coagulation chemical dosing of potable water. Water Science and Technology: Water Supply 6 3 (2006) 97-104
    • (2006) Water Science and Technology: Water Supply , vol.6 , Issue.3 , pp. 97-104
    • Chen, C.-L.1    Hou, P.-L.2
  • 6
    • 12844278002 scopus 로고    scopus 로고
    • Neural networks: an efficient approach to predict on-line the optimal coagulant dose
    • Deveughele S., and Do-Quang Z. Neural networks: an efficient approach to predict on-line the optimal coagulant dose. Water Science and Technology: Water Supply 4 5-6 (2004) 87-94
    • (2004) Water Science and Technology: Water Supply , vol.4 , Issue.5-6 , pp. 87-94
    • Deveughele, S.1    Do-Quang, Z.2
  • 9
    • 1642336479 scopus 로고    scopus 로고
    • Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters
    • Maier H.R., Margan N., and Chow C.W.K. Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environmental Modeling and Software 19 (2004) 485-494
    • (2004) Environmental Modeling and Software , vol.19 , pp. 485-494
    • Maier, H.R.1    Margan, N.2    Chow, C.W.K.3
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 17444432619 scopus 로고    scopus 로고
    • Automatic detection of ophthalmic arterystenosis using the adaptive neuro-fuzzy inference system
    • Inan Guler., and Elif Derya Ubeyli. Automatic detection of ophthalmic arterystenosis using the adaptive neuro-fuzzy inference system. Engineering Applications of Artificial Intelligence 18 (2005) 413-422
    • (2005) Engineering Applications of Artificial Intelligence , vol.18 , pp. 413-422
    • Inan, Guler.1    Elif Derya, Ubeyli.2
  • 13
    • 0034284680 scopus 로고    scopus 로고
    • The effects of data preprocessing in the determination of coagulant dosing rate
    • Joo D.-S., Choi D.-J., and Park H. The effects of data preprocessing in the determination of coagulant dosing rate. Water Research 34 13 (2000) 3295-3302
    • (2000) Water Research , vol.34 , Issue.13 , pp. 3295-3302
    • Joo, D.-S.1    Choi, D.-J.2    Park, H.3
  • 14
    • 0032800801 scopus 로고    scopus 로고
    • Empirical mathematical models and artificial neural networks for the determination of alum doses for treatment of southern Australian surface waters
    • van Leeuwen J., Chow C.W.K., Bursill D., and Drikas M. Empirical mathematical models and artificial neural networks for the determination of alum doses for treatment of southern Australian surface waters. Journal of Water Supply Research and Technology-Aqua 48 3 (1999) 115-127
    • (1999) Journal of Water Supply Research and Technology-Aqua , vol.48 , Issue.3 , pp. 115-127
    • van Leeuwen, J.1    Chow, C.W.K.2    Bursill, D.3    Drikas, M.4
  • 15
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: a statistical perspective
    • White H. Learning in artificial neural networks: a statistical perspective. Neural Computation 1 (1989) 425-464
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1
  • 16
    • 0033742817 scopus 로고    scopus 로고
    • Application of artificial neural network to control the coagulant dosing in water treatment plant
    • Yu R.-F., Kang S.-F., Liaw S.-L., and Chen M.-C. Application of artificial neural network to control the coagulant dosing in water treatment plant. Water Science and Technology 42 3-4 (2000) 403-408
    • (2000) Water Science and Technology , vol.42 , Issue.3-4 , pp. 403-408
    • Yu, R.-F.1    Kang, S.-F.2    Liaw, S.-L.3    Chen, M.-C.4
  • 17
    • 0033081947 scopus 로고    scopus 로고
    • Real-time water treatment process control with artificial neural networks
    • Zhang Q., and Stanley S.J. Real-time water treatment process control with artificial neural networks. Journal of Environmental Engineering, ASCE 125 2 (1999) 153-160
    • (1999) Journal of Environmental Engineering, ASCE , vol.125 , Issue.2 , pp. 153-160
    • Zhang, Q.1    Stanley, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.