-
1
-
-
0037452096
-
Dynamics and mechanics of the microtubule plus end
-
doi: 10.1038/nature01600
-
Howard J, Hyman AA, (2003) Dynamics and mechanics of the microtubule plus end. Nature 422: 753-758 doi:10.1038/nature01600.
-
(2003)
Nature
, vol.422
, pp. 753-758
-
-
Howard, J.1
Hyman, A.A.2
-
3
-
-
0021686169
-
Dynamic instability of microtubule growth
-
doi: 10.1038/312237a0
-
Mitchison T, Kirschner M, (1984) Dynamic instability of microtubule growth. Nature 312: 237-242 doi:10.1038/312237a0.
-
(1984)
Nature
, vol.312
, pp. 237-242
-
-
Mitchison, T.1
Kirschner, M.2
-
4
-
-
57149102485
-
Detection of GTP-Tubulin Conformation in Vivo Reveals a Role for GTP Remnants in Microtubule Rescues
-
doi: 10.1126/science.1165401
-
Dimitrov A, Quesnoit M, Moutel S, Cantaloube I, Pous C, et al. (2008) Detection of GTP-Tubulin Conformation in Vivo Reveals a Role for GTP Remnants in Microtubule Rescues. Science 322: 1353-1356 doi:10.1126/science.1165401.
-
(2008)
Science
, vol.322
, pp. 1353-1356
-
-
Dimitrov, A.1
Quesnoit, M.2
Moutel, S.3
Cantaloube, I.4
Pous, C.5
-
5
-
-
60349099913
-
Microtubule Assembly: Lattice GTP to the Rescue
-
doi: 10.1016/j.cub.2008.12.035
-
Cassimeris L, (2009) Microtubule Assembly: Lattice GTP to the Rescue. Current Biology 19: R174-R176 doi:10.1016/j.cub.2008.12.035.
-
(2009)
Current Biology
, vol.19
-
-
Cassimeris, L.1
-
6
-
-
80052007210
-
Rapid Microtubule Self-Assembly Kinetics
-
doi: 10.1016/j.cell.2011.06.053
-
Gardner MK, Charlebois BD, Jánosi IM, Howard J, Hunt AJ, et al. (2011) Rapid Microtubule Self-Assembly Kinetics. Cell 146: 582-592 doi:10.1016/j.cell.2011.06.053.
-
(2011)
Cell
, vol.146
, pp. 582-592
-
-
Gardner, M.K.1
Charlebois, B.D.2
Jánosi, I.M.3
Howard, J.4
Hunt, A.J.5
-
7
-
-
0027075124
-
Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP
-
Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ, (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell 3: 1155-1167.
-
(1992)
Mol Biol Cell
, vol.3
, pp. 1155-1167
-
-
Hyman, A.A.1
Salser, S.2
Drechsel, D.N.3
Unwin, N.4
Mitchison, T.J.5
-
8
-
-
0028675012
-
The minimum GTP cap required to stabilize microtubules
-
doi: 10.1016/S0960-9822(00)00243-8
-
Drechsel DN, Kirschner MW, (1994) The minimum GTP cap required to stabilize microtubules. Current Biology 4: 1053-1061 doi:10.1016/S0960-9822(00)00243-8.
-
(1994)
Current Biology
, vol.4
, pp. 1053-1061
-
-
Drechsel, D.N.1
Kirschner, M.W.2
-
9
-
-
0029153356
-
Rigidity of microtubules is increased by stabilizing agents
-
doi: 10.1083/jcb.130.4.909
-
Mickey B, Howard J, (1995) Rigidity of microtubules is increased by stabilizing agents. J Cell Biol 130: 909-917 doi:10.1083/jcb.130.4.909.
-
(1995)
J Cell Biol
, vol.130
, pp. 909-917
-
-
Mickey, B.1
Howard, J.2
-
10
-
-
0029989442
-
Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules
-
Caplow M, Shanks J, (1996) Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Mol Biol Cell 7: 663-675.
-
(1996)
Mol Biol Cell
, vol.7
, pp. 663-675
-
-
Caplow, M.1
Shanks, J.2
-
11
-
-
43149111310
-
EB1 regulates microtubule dynamics and tubulin sheet closure in vitro
-
doi: 10.1038/ncb1703
-
Vitre B, Coquelle FM, Heichette C, Garnier C, Chrétien D, et al. (2008) EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nature Cell Biology 10: 415-421 doi:10.1038/ncb1703.
-
(2008)
Nature Cell Biology
, vol.10
, pp. 415-421
-
-
Vitre, B.1
Coquelle, F.M.2
Heichette, C.3
Garnier, C.4
Chrétien, D.5
-
12
-
-
70449574092
-
EB1 Recognizes the Nucleotide State of Tubulin in the Microtubule Lattice
-
doi: 10.1371/journal.pone.0007585
-
Zanic M, Stear JH, Hyman AA, Howard J, (2009) EB1 Recognizes the Nucleotide State of Tubulin in the Microtubule Lattice. PLoS ONE 4: e7585 doi:10.1371/journal.pone.0007585.
-
(2009)
PLoS ONE
, vol.4
-
-
Zanic, M.1
Stear, J.H.2
Hyman, A.A.3
Howard, J.4
-
13
-
-
0028149355
-
The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice
-
doi: 10.1083/jcb.127.3.779
-
Caplow M, Ruhlen RL, Shanks J, (1994) The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J Cell Biol 127: 779-788 doi:10.1083/jcb.127.3.779.
-
(1994)
J Cell Biol
, vol.127
, pp. 779-788
-
-
Caplow, M.1
Ruhlen, R.L.2
Shanks, J.3
-
14
-
-
0028887848
-
Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha,beta)-methylene-diphosphonate
-
Hyman AA, Chrétien D, Arnal I, Wade RH, (1995) Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha,beta)-methylene-diphosphonate. J Cell Biol 128: 117-125.
-
(1995)
J Cell Biol
, vol.128
, pp. 117-125
-
-
Hyman, A.A.1
Chrétien, D.2
Arnal, I.3
Wade, R.H.4
-
15
-
-
35949006231
-
Phase diagram of microtubules
-
doi: 10.1103/PhysRevE.50.1579
-
Fygenson DK, Braun E, Libchaber A, (1994) Phase diagram of microtubules. Physical Review E 50: 1579-1588 doi:10.1103/PhysRevE.50.1579.
-
(1994)
Physical Review E
, vol.50
, pp. 1579-1588
-
-
Fygenson, D.K.1
Braun, E.2
Libchaber, A.3
-
16
-
-
84884851021
-
Preparation of Tubulin from Porcine Brain
-
Elsevier
-
Ashford A, Hyman A, (2006) Preparation of Tubulin from Porcine Brain. Cell Biology pp. 155-160 Elsevier, Vol. 2 Available:http://linkinghub.elsevier.com/retrieve/pii/B9780121647308500940. Accessed 6 October 2011.
-
(2006)
Cell Biology
, vol.2
, pp. 155-160
-
-
Ashford, A.1
Hyman, A.2
-
17
-
-
0025762199
-
Preparation of modified tubulins
-
doi: 10.1016/0076-6879(91)96041-O
-
Hyman A, Drechsel D, Kellogg D, Salser S, Sawin K, et al. (1991) Preparation of modified tubulins. Meth Enzymol 196: 478-485 doi:10.1016/0076-6879(91)96041-O.
-
(1991)
Meth Enzymol
, vol.196
, pp. 478-485
-
-
Hyman, A.1
Drechsel, D.2
Kellogg, D.3
Salser, S.4
Sawin, K.5
-
18
-
-
0037292454
-
The Kinesin-Related Protein MCAK Is a Microtubule Depolymerase that Forms an ATP-Hydrolyzing Complex at Microtubule Ends
-
doi: 10.1016/S1097-2765(03)00049-2
-
Hunter AW, Caplow M, Coy DL, Hancock WO, Diez S, et al. (2003) The Kinesin-Related Protein MCAK Is a Microtubule Depolymerase that Forms an ATP-Hydrolyzing Complex at Microtubule Ends. Molecular Cell 11: 445-457 doi:10.1016/S1097-2765(03)00049-2.
-
(2003)
Molecular Cell
, vol.11
, pp. 445-457
-
-
Hunter, A.W.1
Caplow, M.2
Coy, D.L.3
Hancock, W.O.4
Diez, S.5
-
19
-
-
77955301639
-
Microtubule Dynamics Reconstituted In Vitro and Imaged by Single-Molecule Fluorescence Microscopy
-
Elsevier
-
Gell C, Bormuth V, Brouhard GJ, Cohen DN, Diez S, et al. (2010) Microtubule Dynamics Reconstituted In Vitro and Imaged by Single-Molecule Fluorescence Microscopy. Methods in Cell Biology pp. 221-245 Elsevier, Vol. 95 Available: http://linkinghub.elsevier.com/retrieve/pii/S0091679X10950139. Accessed 6 October 2011.
-
(2010)
Methods in Cell Biology
, vol.95
, pp. 221-245
-
-
Gell, C.1
Bormuth, V.2
Brouhard, G.J.3
Cohen, D.N.4
Diez, S.5
-
20
-
-
33646950699
-
The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends
-
doi: 10.1038/nature04736
-
Helenius J, Brouhard G, Kalaidzidis Y, Diez S, Howard J, (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441: 115-119 doi:10.1038/nature04736.
-
(2006)
Nature
, vol.441
, pp. 115-119
-
-
Helenius, J.1
Brouhard, G.2
Kalaidzidis, Y.3
Diez, S.4
Howard, J.5
-
21
-
-
37649004096
-
XMAP215 Is a Processive Microtubule Polymerase
-
doi: 10.1016/j.cell.2007.11.043
-
Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, et al. (2008) XMAP215 Is a Processive Microtubule Polymerase. Cell 132: 79-88 doi:10.1016/j.cell.2007.11.043.
-
(2008)
Cell
, vol.132
, pp. 79-88
-
-
Brouhard, G.J.1
Stear, J.H.2
Noetzel, T.L.3
Al-Bassam, J.4
Kinoshita, K.5
|