메뉴 건너뛰기




Volumn 25, Issue 2, 2012, Pages 295-308

A new ARIMA-based neuro-fuzzy approach and swarm intelligence for time series forecasting

Author keywords

Auto regressive integrated moving average model (ARIMA); Hybrid learning; Neuro fuzzy system (NFS); Particle swarm optimization (PSO); Recursive least squares estimator (RLSE); Time series forecasting

Indexed keywords

AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE; HYBRID LEARNING; NEUROFUZZY SYSTEM; RECURSIVE LEAST-SQUARES ESTIMATORS; TIME SERIES FORECASTING;

EID: 84855819427     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2011.10.005     Document Type: Article
Times cited : (52)

References (38)
  • 2
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan, and P.M. Grant Orthogonal least squares learning algorithm for radial basis function networks IEEE Trans. Neural Networks 2 1991 302 309
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 3
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • K.B. Cho, and B.H. Wang Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction Fuzzy Sets Syst. 83 1996 325 339 (Pubitemid 126667511)
    • (1996) Fuzzy Sets and Systems , vol.83 , Issue.3 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 4
    • 21244438033 scopus 로고    scopus 로고
    • Time-series forecasting using flexible neural tree model
    • DOI 10.1016/j.ins.2004.10.005, PII S0020025504002944
    • Y. Chen, B. Yang, J. Dong, and A. Abraham Time-series forecasting using flexible neural tree model Inf. Sci. 174 2005 219 235 (Pubitemid 40893971)
    • (2005) Information Sciences , vol.174 , Issue.3-4 , pp. 219-235
    • Chen, Y.1    Yang, B.2    Dong, J.3    Abraham, A.4
  • 5
    • 29444444293 scopus 로고    scopus 로고
    • Time-series prediction using a local linear wavelet neural network
    • DOI 10.1016/j.neucom.2005.02.006, PII S0925231205000457
    • Y. Chen, B. Yang, and J. Dong Time-series prediction using a local linear wavelet neural network Neurocomputing 69 2006 449 465 (Pubitemid 43009121)
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 449-465
    • Chen, Y.1    Yang, B.2    Dong, J.3
  • 6
  • 7
    • 59649099114 scopus 로고    scopus 로고
    • Incremental learning of dynamic fuzzy neural networks for accurate system modeling
    • X. Deng, and X. Wang Incremental learning of dynamic fuzzy neural networks for accurate system modeling Fuzzy Sets Syst. 160 2009 972 987
    • (2009) Fuzzy Sets Syst. , vol.160 , pp. 972-987
    • Deng, X.1    Wang, X.2
  • 8
    • 0001092601 scopus 로고
    • Some considerations on fuzzy conditional inference
    • S. Fukami, M. Mizumoto, and K. Tanaka Some considerations on fuzzy conditional inference Fuzzy Sets Syst. 4 1980 243 273
    • (1980) Fuzzy Sets Syst. , vol.4 , pp. 243-273
    • Fukami, S.1    Mizumoto, M.2    Tanaka, K.3
  • 9
    • 11244305511 scopus 로고    scopus 로고
    • NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches
    • DOI 10.1016/j.fss.2004.09.015, PII S0165011404004099
    • Y. Gao, and M.J. Er NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches Fuzzy Sets Syst. 150 2005 331 350 (Pubitemid 40056024)
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 331-350
    • Gao, Y.1    Er, M.J.2
  • 10
    • 61849164592 scopus 로고    scopus 로고
    • Fuzzy prediction architecture using recurrent neural networks
    • D. Graves, and W. Pedrycz Fuzzy prediction architecture using recurrent neural networks Neurocomputing 72 2009 1668 1678
    • (2009) Neurocomputing , vol.72 , pp. 1668-1678
    • Graves, D.1    Pedrycz, W.2
  • 11
    • 34249662828 scopus 로고    scopus 로고
    • Multigrid-based fuzzy systems for time series prediction: CATS competition
    • DOI 10.1016/j.neucom.2006.09.014, PII S0925231207000458, Selected papers from the 3rd International Conference on Development and Learning (ICDL 2004)
    • L.J. Herrera, H. Pomares, I. Rojas, A. Guillen, J. Gonzalez, M. Awad, and A. Herrera Multigrid-based fuzzy systems for time series prediction: CATS competition Neurocomputing 70 2007 2410 2425 (Pubitemid 46825389)
    • (2007) Neurocomputing , vol.70 , Issue.13-15 , pp. 2410-2425
    • Herrera, L.J.1    Pomares, H.2    Rojas, I.3    Guillen, A.4    Gonzalez, J.5    Awad, M.6    Herrera, A.7
  • 13
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J.S.R. Jang ANFIS: adaptive-network-based fuzzy inference system IEEE Trans. Syst.; Man, Cybern. 23 1993 665 685
    • (1993) IEEE Trans. Syst.; Man, Cybern. , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 15
    • 1842535329 scopus 로고    scopus 로고
    • A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
    • C.-F. Juang A hybrid of genetic algorithm and particle swarm optimization for recurrent network design IEEE Trans. Syst.; Man, Cybern.; Part B: Cybern. 34 2004 997 1006
    • (2004) IEEE Trans. Syst.; Man, Cybern.; Part B: Cybern. , vol.34 , pp. 997-1006
    • Juang, C.-F.1
  • 17
    • 0031253132 scopus 로고    scopus 로고
    • FuNN/2 - A fuzzy neural network architecture for adaptive learning and knowledge acquisition
    • N.K. Kasabov, J. Kim, M.J. Watts, and A.R. Gray FuNN/2 - a fuzzy neural network architecture for adaptive learning and knowledge acquisition Inf. Sci. 101 1997 155 175
    • (1997) Inf. Sci. , vol.101 , pp. 155-175
    • Kasabov, N.K.1    Kim, J.2    Watts, M.J.3    Gray, A.R.4
  • 18
    • 0032845493 scopus 로고    scopus 로고
    • HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
    • DOI 10.1016/S0893-6080(99)00067-2, PII S0893608099000672
    • J. Kim, and N. Kasabov HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems Neural Networks 12 1999 1301 1319 (Pubitemid 29475159)
    • (1999) Neural Networks , vol.12 , Issue.9 , pp. 1301-1319
    • Kim, J.1    Kasabov, N.2
  • 21
    • 0001623515 scopus 로고    scopus 로고
    • Neuro-fuzzy systems for function approximation
    • PII S0165011498001699
    • D. Nauck, and R. Kruse Neuro-fuzzy systems for function approximation Fuzzy Sets Syst. 101 1999 261 271 (Pubitemid 129496792)
    • (1999) Fuzzy Sets and Systems , vol.101 , Issue.2 , pp. 261-271
    • Nauck, D.1    Kruse, R.2
  • 22
    • 0036565201 scopus 로고    scopus 로고
    • Subsethood-product fuzzy neural inference system (SuPFuNIS)
    • DOI 10.1109/TNN.2002.1000126, PII S1045922702044326
    • S. Paul, and S. Kumar Subsethood-product fuzzy neural inference system (SuPFuNIS) IEEE Trans. Neural Networks 13 2002 578 599 (Pubitemid 34669649)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 578-599
    • Paul, S.1    Kumar, S.2
  • 23
    • 0344291226 scopus 로고    scopus 로고
    • Recent approaches to global optimization problems through particle swarm optimization
    • K. Parsopoulos, and M.N. Vrahatis Recent approaches to global optimization problems through particle swarm optimization Nat. Comput. 1 2002 235 306
    • (2002) Nat. Comput. , vol.1 , pp. 235-306
    • Parsopoulos, K.1    Vrahatis, M.N.2
  • 25
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • H.J. Rong, N. Sundararajan, G.B. Huang, and P. Saratchandran Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction Fuzzy Sets Syst. 157 2006 1260 1275
    • (2006) Fuzzy Sets Syst. , vol.157 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 28
    • 84855793141 scopus 로고    scopus 로고
    • Parameter estimation using least square method for MIMO TakagiSugeno neuro-fuzzy in time series forecasting
    • I. Sugiarto, and S. Natarajan Parameter estimation using least square method for MIMO TakagiSugeno neuro-fuzzy in time series forecasting J. Tek. Elektro. 7 2 2007 82 87
    • (2007) J. Tek. Elektro. , vol.7 , Issue.2 , pp. 82-87
    • Sugiarto, I.1    Natarajan, S.2
  • 29
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • M. Sugeno, and G.T. Kang Structure identification of fuzzy model Fuzzy Sets Syst. 28 1988 15 33
    • (1988) Fuzzy Sets Syst. , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 31
    • 84879015433 scopus 로고    scopus 로고
    • Parameter Selection in Particle Swarm Optimization
    • Evolutionary Programming VII
    • Y. Shi, and R. Eberhart Parameter selection in particle swarm optimization Lect. Notes Comput. Sci. 1447 1998 591 600 (Pubitemid 128118969)
    • (1998) Lecture Notes in Computer Science , Issue.1447 , pp. 591-600
    • Shi, Y.1    Eberhart, R.C.2
  • 32
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Trans. Syst.; Man, Cybern. 15 1985 116 132
    • (1985) IEEE Trans. Syst.; Man, Cybern. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 33
    • 0035469840 scopus 로고    scopus 로고
    • Evolutionary learning of rule premises for fuzzy modelling
    • N. Xiong Evolutionary learning of rule premises for fuzzy modelling Int. J. Syst. Sci. 32 2001 1109 1118
    • (2001) Int. J. Syst. Sci. , vol.32 , pp. 1109-1118
    • Xiong, N.1
  • 34
    • 84855788050 scopus 로고    scopus 로고
    • Yahoo Website
    • Yahoo Website. IBM Stocks. Available: 〈http://ichart.finance.yahoo. com/table.csv?s=IBM&a=02&b=08&c=2006&d=01&e=25&f= 2010&g=d&ignore=.csv〉, 2010
    • (2010) IBM Stocks
  • 35
    • 37249083060 scopus 로고    scopus 로고
    • Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    • DOI 10.1016/j.asoc.2007.07.011, PII S1568494607000828
    • M. Zounemat-Kermani, and M. Teshnehlab Using adaptive neuro-fuzzy inference system for hydrological time series prediction Appl. Soft Comput. 8 2008 928 936 (Pubitemid 350266489)
    • (2008) Applied Soft Computing Journal , vol.8 , Issue.2 , pp. 928-936
    • Zounemat-Kermani, M.1    Teshnehlab, M.2
  • 36
    • 56349106409 scopus 로고    scopus 로고
    • PSO-based single multiplicative neuron model for time series prediction
    • L. Zhao, and Y. Yang PSO-based single multiplicative neuron model for time series prediction Expert Syst. Appl. 36 2009 2805 2812
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2805-2812
    • Zhao, L.1    Yang, Y.2
  • 37
    • 34248666540 scopus 로고
    • Fuzzy sets
    • L.A. Zadeh Fuzzy sets Inf. Control 8 1965 338 353
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 38
    • 34250406938 scopus 로고
    • Fuzzy logic and approximate reasoning
    • L.A. Zadeh Fuzzy logic and approximate reasoning Synthese 30 1975 407 428
    • (1975) Synthese , vol.30 , pp. 407-428
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.