-
1
-
-
0004093524
-
-
Thousand Oaks, CA: Sage
-
Allison, P. (2002). Missing data. Thousand Oaks, CA: Sage.
-
(2002)
Missing data
-
-
Allison, P.1
-
2
-
-
54049109688
-
What improves with increased missing data imputations?
-
doi:101080/10705510802339072
-
Bodner, T. (2008). What improves with increased missing data imputations? Structural Equation Modeling, 15, 651-675. doi:10.1080/10705510802339072
-
(2008)
Structural Equation Modeling
, vol.15
, pp. 651-675
-
-
Bodner, T.1
-
3
-
-
0000783293
-
Efficacy of the indirect approach for estimating structural equation models with missing data: A comparison of five methods
-
doi:101080/10705519409539983
-
Brown, R. (1994). Efficacy of the indirect approach for estimating structural equation models with missing data: A comparison of five methods. Structural Equation Modeling, 1, 287-316. doi:10.1080/10705519409539983
-
(1994)
Structural Equation Modeling,
, vol.1
, pp. 287-316
-
-
Brown, R.1
-
4
-
-
0001557972
-
The conceptualization and analysis of change over time: An integrative approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM)
-
doi:101177/109442819814004
-
Chan, D. (1998). The conceptualization and analysis of change over time: An integrative approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM). Organizational Research Methods, 1, 421-483. doi:10.1177/109442819814004
-
(1998)
Organizational Research Methods,
, vol.1
, pp. 421-483
-
-
Chan, D.1
-
5
-
-
21844519951
-
Modeling incomplete longitudinal substance use data using latent variable growth curve methodology
-
doi:101207/s15327906mbr2904_1
-
Duncan, S., & Duncan, T. (1994). Modeling incomplete longitudinal substance use data using latent variable growth curve methodology. Multivariate Behavioral Research, 29, 313-338. doi:10.1207/s15327906mbr2904_1
-
(1994)
Multivariate Behavioral Research,
, vol.29
, pp. 313-338
-
-
Duncan, S.1
Duncan, T.2
-
6
-
-
0035537304
-
The performance of the full information maximumlikelihood estimator in multiple regressionmodels with missing data
-
doi:101177/0013164401615001
-
Enders, C. (2001). The performance of the full information maximumlikelihood estimator in multiple regressionmodels with missing data. Educational and Psychological Measurement, 61, 713-740. doi:10.1177/0013164401615001
-
(2001)
Educational and Psychological Measurement,
, vol.61
, pp. 713-740
-
-
Enders, C.1
-
7
-
-
0000885702
-
The relative performance of full information maximum likelihood estimation for missing data in structural equation models
-
doi:10.1207/S15328007SEM 0803_5
-
Enders, C., & Bandalos, D. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430-457. doi:10.1207/S15328007SEM 0803_5
-
(2001)
Structural Equation Modeling
, vol.8
, pp. 430-457
-
-
Enders, C.1
Bandalos, D.2
-
8
-
-
0014099014
-
Maximum-likelihood estimation for the mixed analysis of variance model
-
doi:10.1093/biomet/54.1-293
-
Hartley, H. O., & Rao, J. N. K. (1967). Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika, 54(1/2), 93-108. doi:10.1093/biomet/54.1-2.93
-
(1967)
Biometrika,
, vol.54
, Issue.1-2
, pp. 93-108
-
-
Hartley, H.O.1
Rao, J.N.K.2
-
11
-
-
0029157096
-
A multiple imputation strategy for clinical trials with truncation of patient data
-
doi:10.1002/sim4780141707
-
Lavori, P., Dawson, R., & Shera, D. (1995). A multiple imputation strategy for clinical trials with truncation of patient data. Statistics in Medicine, 14, 1913-1925. doi:10.1002/sim.4780141707
-
(1995)
Statistics in Medicine,
, vol.14
, pp. 1913-1925
-
-
Lavori, P.1
Dawson, R.2
Shera, D.3
-
12
-
-
84972537494
-
Multiple-imputation inferences with uncongenial sources of input
-
Meng, X. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9, 538-558.
-
(1994)
Statistical Science,
, vol.9
, pp. 538-558
-
-
Meng, X.1
-
13
-
-
10644222277
-
Analyzing incomplete longitudinal clinical trial data
-
doi:10.1093/biostatistics/5.3445
-
Molenberghs, G., Thijs, H., Jansen, I., Beunckens, C., Kenward, M. G., Mallinckrodt, C., & Carroll, R. J. (2004). Analyzing incomplete longitudinal clinical trial data. Biostat, 5, 445-464. doi:10.1093/biostatistics/5.3.445
-
(2004)
Biostat,
, vol.5
, pp. 445-464
-
-
Molenberghs, G.1
Thijs, H.2
Jansen, I.3
Beunckens, C.4
Kenward, M.G.5
Mallinckrodt, C.6
Carroll, R.J.7
-
14
-
-
0038009574
-
Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques
-
doi:101177/1094428103254673
-
Newman, D. (2003). Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques. Organizational Research Methods, 6, 328-362. doi:10.1177/1094428103254673
-
(2003)
Organizational Research Methods,
, vol.6
, pp. 328-362
-
-
Newman, D.1
-
15
-
-
0017133178
-
Inference and missing data
-
doi:10.1093/biomet/63.3581
-
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592. doi:10.1093/biomet/63.3.581
-
(1976)
Biometrika,
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
16
-
-
0030539070
-
Multiple imputation after 18Cyears
-
doi:10.2307/2291635
-
Rubin, D. B. (1996). Multiple imputation after 18Cyears. Journal of the American Statistical Association, 91, 473-489. doi:10.2307/2291635
-
(1996)
Journal of the American Statistical Association
, vol.91
, pp. 473-489
-
-
Rubin, D.B.1
-
20
-
-
79951568867
-
Missing data in longitudinal studies: A review
-
November, Paper presented at the, Nashville, TN. Retrieved from
-
Schafer, J. (2005, November). Missing data in longitudinal studies: A review. Paper presented at the American Association of Pharmaceutical Scientists, Nashville, TN. Retrieved from http://www.stat.psu.edu/_jls/aaps_schafer.pdf
-
(2005)
American Association of Pharmaceutical Scientists
-
-
Schafer, J.1
|