메뉴 건너뛰기




Volumn 18, Issue 4, 2011, Pages 649-662

Missing data imputation versus full information maximum likelihood with second-level dependencies

Author keywords

Full information maximum likelihood; Longitudinal; Missing data; Multilevel analysis; Multiple imputation

Indexed keywords


EID: 84855800994     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705511.2011.607721     Document Type: Article
Times cited : (192)

References (20)
  • 1
    • 0004093524 scopus 로고    scopus 로고
    • Thousand Oaks, CA: Sage
    • Allison, P. (2002). Missing data. Thousand Oaks, CA: Sage.
    • (2002) Missing data
    • Allison, P.1
  • 2
    • 54049109688 scopus 로고    scopus 로고
    • What improves with increased missing data imputations?
    • doi:101080/10705510802339072
    • Bodner, T. (2008). What improves with increased missing data imputations? Structural Equation Modeling, 15, 651-675. doi:10.1080/10705510802339072
    • (2008) Structural Equation Modeling , vol.15 , pp. 651-675
    • Bodner, T.1
  • 3
    • 0000783293 scopus 로고
    • Efficacy of the indirect approach for estimating structural equation models with missing data: A comparison of five methods
    • doi:101080/10705519409539983
    • Brown, R. (1994). Efficacy of the indirect approach for estimating structural equation models with missing data: A comparison of five methods. Structural Equation Modeling, 1, 287-316. doi:10.1080/10705519409539983
    • (1994) Structural Equation Modeling, , vol.1 , pp. 287-316
    • Brown, R.1
  • 4
    • 0001557972 scopus 로고    scopus 로고
    • The conceptualization and analysis of change over time: An integrative approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM)
    • doi:101177/109442819814004
    • Chan, D. (1998). The conceptualization and analysis of change over time: An integrative approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM). Organizational Research Methods, 1, 421-483. doi:10.1177/109442819814004
    • (1998) Organizational Research Methods, , vol.1 , pp. 421-483
    • Chan, D.1
  • 5
    • 21844519951 scopus 로고
    • Modeling incomplete longitudinal substance use data using latent variable growth curve methodology
    • doi:101207/s15327906mbr2904_1
    • Duncan, S., & Duncan, T. (1994). Modeling incomplete longitudinal substance use data using latent variable growth curve methodology. Multivariate Behavioral Research, 29, 313-338. doi:10.1207/s15327906mbr2904_1
    • (1994) Multivariate Behavioral Research, , vol.29 , pp. 313-338
    • Duncan, S.1    Duncan, T.2
  • 6
    • 0035537304 scopus 로고    scopus 로고
    • The performance of the full information maximumlikelihood estimator in multiple regressionmodels with missing data
    • doi:101177/0013164401615001
    • Enders, C. (2001). The performance of the full information maximumlikelihood estimator in multiple regressionmodels with missing data. Educational and Psychological Measurement, 61, 713-740. doi:10.1177/0013164401615001
    • (2001) Educational and Psychological Measurement, , vol.61 , pp. 713-740
    • Enders, C.1
  • 7
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • doi:10.1207/S15328007SEM 0803_5
    • Enders, C., & Bandalos, D. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430-457. doi:10.1207/S15328007SEM 0803_5
    • (2001) Structural Equation Modeling , vol.8 , pp. 430-457
    • Enders, C.1    Bandalos, D.2
  • 8
    • 0014099014 scopus 로고
    • Maximum-likelihood estimation for the mixed analysis of variance model
    • doi:10.1093/biomet/54.1-293
    • Hartley, H. O., & Rao, J. N. K. (1967). Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika, 54(1/2), 93-108. doi:10.1093/biomet/54.1-2.93
    • (1967) Biometrika, , vol.54 , Issue.1-2 , pp. 93-108
    • Hartley, H.O.1    Rao, J.N.K.2
  • 11
    • 0029157096 scopus 로고
    • A multiple imputation strategy for clinical trials with truncation of patient data
    • doi:10.1002/sim4780141707
    • Lavori, P., Dawson, R., & Shera, D. (1995). A multiple imputation strategy for clinical trials with truncation of patient data. Statistics in Medicine, 14, 1913-1925. doi:10.1002/sim.4780141707
    • (1995) Statistics in Medicine, , vol.14 , pp. 1913-1925
    • Lavori, P.1    Dawson, R.2    Shera, D.3
  • 12
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng, X. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9, 538-558.
    • (1994) Statistical Science, , vol.9 , pp. 538-558
    • Meng, X.1
  • 14
    • 0038009574 scopus 로고    scopus 로고
    • Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques
    • doi:101177/1094428103254673
    • Newman, D. (2003). Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques. Organizational Research Methods, 6, 328-362. doi:10.1177/1094428103254673
    • (2003) Organizational Research Methods, , vol.6 , pp. 328-362
    • Newman, D.1
  • 15
    • 0017133178 scopus 로고
    • Inference and missing data
    • doi:10.1093/biomet/63.3581
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592. doi:10.1093/biomet/63.3.581
    • (1976) Biometrika, , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 16
  • 20
    • 79951568867 scopus 로고    scopus 로고
    • Missing data in longitudinal studies: A review
    • November, Paper presented at the, Nashville, TN. Retrieved from
    • Schafer, J. (2005, November). Missing data in longitudinal studies: A review. Paper presented at the American Association of Pharmaceutical Scientists, Nashville, TN. Retrieved from http://www.stat.psu.edu/_jls/aaps_schafer.pdf
    • (2005) American Association of Pharmaceutical Scientists
    • Schafer, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.