-
1
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., and John, G.H., "Wrappers for feature subset selection", Artificial Intelligence, 97 (1997) 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
2
-
-
0026453958
-
Training a 3-node neural networks is NP-complete
-
Blum, A.L., and Rivest, R.L., "Training a 3-node neural networks is NP-complete", Neural Networks, 5 (1992) 117-127.
-
(1992)
Neural Networks
, vol.5
, pp. 117-127
-
-
Blum, A.L.1
Rivest, R.L.2
-
3
-
-
0019094381
-
A critical evaluation of intrinsic dimensionality algorithms
-
E.S. Gelsema and L.N. Kanal, (eds), Morgan Kaufmann Publishers, Inc
-
Wyse, N., Dubes, R., and Jain, A.K., "A critical evaluation of intrinsic dimensionality algorithms", in: E.S. Gelsema and L.N. Kanal, (eds), Pattern Recognition in Practice, Morgan Kaufmann Publishers, Inc., 1980, 415-425.
-
(1980)
Pattern Recognition in Practice
, pp. 415-425
-
-
Wyse, N.1
Dubes, R.2
Jain, A.K.3
-
4
-
-
70350346892
-
Pattern recognition and reduction of dimensionality
-
P. R. Krishnaiah and L. N. Kanal, (eds) North Holland
-
Ben-Bassat, M., "Pattern recognition and reduction of dimensionality", in: P. R. Krishnaiah and L. N. Kanal, (eds), Handbook of Statistics-II, North Holland, 1982, 773-791.
-
(1982)
Handbook of Statistics-II
, pp. 773-791
-
-
Ben-Bassat, M.1
-
6
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum, A.I., and Langley, P., "Selection of relevant features and examples in machine learning", Artificial Intelligence, 97 (1997) 245-271.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 245-271
-
-
Blum, A.I.1
Langley, P.2
-
7
-
-
0000172706
-
Feature selection methods for classifications
-
Dash, M., and Liu, H., "Feature selection methods for classifications", Intelligent Data Analysis: An International Journal, 1 (3) 1997. http://www-east.elsevier.com/ida/free.htm.
-
(1997)
Intelligent Data Analysis: An International Journal
, vol.1
, Issue.3
-
-
Dash, M.1
Liu, H.2
-
8
-
-
0002878444
-
Feature subset selection and order identification for unsupervised learning
-
Dy, J.G., and Brodley, C.E., "Feature subset selection and order identification for unsupervised learning", in: Proceedings of the Seventeenth International Conference on Machine Learning, 2000, 247-254.
-
(2000)
Proceedings of the Seventeenth International Conference on Machine Learning
, pp. 247-254
-
-
Dy, J.G.1
Brodley, C.E.2
-
9
-
-
0034593107
-
Feature selection for unsupervised learning via evolutionary search
-
Kim, Y., Street, W., and Menczer, F., "Feature selection for unsupervised learning via evolutionary search", in: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000, 365-369.
-
(2000)
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 365-369
-
-
Kim, Y.1
Street, W.2
Menczer, F.3
-
11
-
-
0036522403
-
Unsupervised feature selection using feature similarity
-
Mitra, P., Murthy, C. A., and Pal, S. K., "Unsupervised feature selection using feature similarity", IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (3) (2002) 301-312.
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.3
, pp. 301-312
-
-
Mitra, P.1
Murthy, C.A.2
Pal, S.K.3
-
16
-
-
85099479344
-
Learning with many irrelevant features
-
Anaheim, CA
-
Almuallim, H., and Dietterich, T. G., "Learning with many irrelevant features", in: Proc. AAAI-91, Anaheim, CA, 1991, 547-552.
-
(1991)
Proc. AAAI-91
, pp. 547-552
-
-
Almuallim, H.1
Dietterich, T.G.2
-
17
-
-
0003036517
-
The feature selection problem: Tradional methods and a new algorithm
-
San Jose, CA
-
Kira, K., and Rendell, L. A., "The feature selection problem: tradional methods and a new algorithm", in: Proc. AAAI-92, San Jose, CA, 1992, 122-126.
-
(1992)
Proc. AAAI-92
, pp. 122-126
-
-
Kira, K.1
Rendell, L.A.2
-
18
-
-
0003802343
-
-
Wadsworth and Brooks, Monterey, CA
-
Breiman, L., Friedman, J.H., Olshen, R.H., and Stone, C.J., Classification and Regression Trees, Wadsworth and Brooks, Monterey, CA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.H.3
Stone, C.J.4
-
19
-
-
0035271419
-
A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
-
Duch, W., Adamczak, R., and Grabczewski, K., "A new methodology of extraction, optimization and application of crisp and fuzzy logical rules", IEEE Transactions on Neural Networks, 12 (2001) 277-306.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, pp. 277-306
-
-
Duch, W.1
Adamczak, R.2
Grabczewski, K.3
-
20
-
-
0027002165
-
The attribute selection problem in decision tree generation
-
AAAI Press/The MIT Press
-
Fayyad, U.M., and Irani, K.B. "The attribute selection problem in decision tree generation", in: AAAI-92, Proceedings of the Ninth National Conference on Artificial Intelligence, AAAI Press/The MIT Press, 1992, 104-110.
-
(1992)
AAAI-92, Proceedings of the Ninth National Conference on Artificial Intelligence
, pp. 104-110
-
-
Fayyad, U.M.1
Irani, K.B.2
-
21
-
-
0002715112
-
A probabilistic approach to feature selection - A filter solution
-
L. Saitta, (ed.), July 3-6 Bari, Italy, 1996, San Francisco: Morgan Kaufmann Publishers, CA
-
Liu, H., and Setiono, R. "A probabilistic approach to feature selection - a filter solution", in: L. Saitta, (ed.), Proceedings of International Conference on Machine Learning (ICML-96), July 3-6, 1996, Bari, Italy, 1996, San Francisco: Morgan Kaufmann Publishers, CA, 319-327.
-
(1996)
Proceedings of International Conference on Machine Learning (ICML-96)
, pp. 319-327
-
-
Liu, H.1
Setiono, R.2
-
22
-
-
85099325734
-
Irrelevant feature and the subset selection problem
-
W., W. and Hirsh H., Cohen, (eds.), New Brunswick, N.J. Rutgers University
-
John, G.H., Kohavi, R., and Pfleger, K., "Irrelevant feature and the subset selection problem", in: W., W. and Hirsh H., Cohen, (eds.), Machine Learning: Proceedings of the Eleventh International Conference, New Brunswick, N.J., 1994, Rutgers University, 121-129.
-
(1994)
Machine Learning: Proceedings of the Eleventh International Conference
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
23
-
-
0006500676
-
Greedy attribute selection
-
Menlo Park, California AAAI Press/The MIT Press
-
Caruana, R., and Freitag, D., "Greedy attribute selection", in: Proceedings of International Conference on Machine Learning (ICML-94), Menlo Park, California, 1994, AAAI Press/The MIT Press, 28-36.
-
(1994)
Proceedings of International Conference on Machine Learning (ICML-94)
, pp. 28-36
-
-
Caruana, R.1
Freitag, D.2
-
24
-
-
0003076895
-
Feature selection for high-dimensional genomic microarray data
-
Xing, E., Jordan, M., and Karp, R., "Feature selection for high-dimensional genomic microarray data", in: Proceedings of the Eighteenth International Conference On Machine Learning, 2001.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning
-
-
Xing, E.1
Jordan, M.2
Karp, R.3
-
25
-
-
0003932630
-
-
Morgan Kaufmann Publishers, San Mateo, California
-
Weiss, S.M., and Kulikowski, C.A., Computer Systems That Learn, Morgan Kaufmann Publishers, San Mateo, California, 1991.
-
(1991)
Computer Systems That Learn
-
-
Weiss, S.M.1
Kulikowski, C.A.2
-
26
-
-
0031359166
-
Dimensionality reduction of unsupervised data
-
November Newport Beach, California 1997, IEEE Computer Society
-
Dash, M., Liu, H., and Yao, J., "Dimensionality reduction of unsupervised data", in: Proceedings of the Ninth IEEE International Conference on Tools with AI (ICTAI'97), November, 1997, Newport Beach, California, 1997, IEEE Computer Society, 532-539.
-
(1997)
Proceedings of the Ninth IEEE International Conference on Tools with AI (ICTAI'97)
, pp. 532-539
-
-
Dash, M.1
Liu, H.2
Yao, J.3
-
28
-
-
0032028297
-
Feature subset selection using a genetic algorithm
-
Yang, J., and Honavar, V., "Feature subset selection using a genetic algorithm", IEEE Intelligent Systems, 13 (1998) 44-49.
-
(1998)
IEEE Intelligent Systems
, vol.13
, pp. 44-49
-
-
Yang, J.1
Honavar, V.2
-
29
-
-
0000012317
-
Toward optimal feature selection
-
Koller, D., and Sahami, M., "Toward optimal feature selection", in: International Conference on Machine Learning, 1996, 284-292.
-
(1996)
International Conference on Machine Learning
, pp. 284-292
-
-
Koller, D.1
Sahami, M.2
-
30
-
-
33745311979
-
Entropy criterion for classifier-independent feature selection
-
Abe, N., and Kudo, M., "Entropy criterion for classifier-independent feature selection", Lecture Notes in Computer Science, 3684 (2005) 689-695.
-
(2005)
Lecture Notes in Computer Science
, vol.3684
, pp. 689-695
-
-
Abe, N.1
Kudo, M.2
-
31
-
-
0000916783
-
Practical feature subset selection for machine learning
-
Hall, M.A., and Smith, L.A., "Practical feature subset selection for machine learning", Proceedings of the 21st Australian Computer Science Conference, 1998, 181-191.
-
(1998)
Proceedings of the 21st Australian Computer Science Conference
, pp. 181-191
-
-
Hall, M.A.1
Smith, L.A.2
-
32
-
-
0029503525
-
Chi2: Feature selection and discretization of numeric attributes
-
Liu, H., and Setiono, R., "Chi2: Feature selection and discretization of numeric attributes", Proc. IEEE 7th International Conference on Tools with Artificial Intelligence, 1995, 338-391.
-
(1995)
Proc. IEEE 7th International Conference on Tools with Artificial Intelligence
, pp. 338-391
-
-
Liu, H.1
Setiono, R.2
-
33
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R.C., "Very simple classification rules perform well on most commonly used datasets", Machine Learning, 11 (1993) 63-91.
-
(1993)
Machine Learning
, vol.11
, pp. 63-91
-
-
Holte, R.C.1
-
34
-
-
0141990695
-
Theoretical and empirical analysis of relief and rreliefF
-
doi: 10.1023/A:1025667309714
-
Marko, R.S., and Igor, K., "Theoretical and empirical analysis of relief and rreliefF", Machine Learning Journal, 53 (2003) 23-69. doi: 10.1023/A:1025667309714
-
(2003)
Machine Learning Journal
, vol.53
, pp. 23-69
-
-
Marko, R.S.1
Igor, K.2
-
35
-
-
33746227788
-
Gene classification using expression profiles: A feasibility study
-
Kuramochi, M., and Karypis, G., "Gene classification using expression profiles: a feasibility study", International Journal on Artificial Intelligence Tools, 14 (4) (2005) 641-660.
-
(2005)
International Journal on Artificial Intelligence Tools
, vol.14
, Issue.4
, pp. 641-660
-
-
Kuramochi, M.1
Karypis, G.2
-
36
-
-
0031269184
-
Feature selection and transduction for prediction of molecular bioactivity for drug design
-
Domingos, P., and Pazzani, M., "Feature selection and transduction for prediction of molecular bioactivity for drug design", Machine Learning, 29 (1997) 103-130.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
37
-
-
0003076895
-
Feature selection for high-dimensional genomic microarray data
-
Xing, E. P., Jordan, M. L., and Karp, R. M., "Feature selection for high-dimensional genomic microarray data", Proceedings of the 18th International Conference on Machine Learning, 2001, 601-608.
-
(2001)
Proceedings of the 18th International Conference on Machine Learning
, pp. 601-608
-
-
Xing, E.P.1
Jordan, M.L.2
Karp, R.M.3
-
38
-
-
78649934709
-
-
Irvine, CA: University of California, School of Information and Computer Science
-
Frank, A., and Asuncion, A., UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, 2010.
-
(2010)
UCI Machine Learning Repository
-
-
Frank, A.1
Asuncion, A.2
|