메뉴 건너뛰기




Volumn 30, Issue 1, 2012, Pages 113-133

Cluster-based instance selection for machine classification

Author keywords

Data mining; Instance selection; Machine learning; Multi agent system

Indexed keywords


EID: 84855558393     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0375-z     Document Type: Article
Times cited : (57)

References (55)
  • 1
    • 0025725905 scopus 로고    scopus 로고
    • Instance-based learning algorithms
    • Aha DW, Kibler D, Albert MK (1999) Instance-based learning algorithms. Mach Learn 6: 37-66.
    • (1999) Mach Learn , vol.6 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 3
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, Accessed 24 June 2009
    • Asuncion A, Newman DJ (2007) UCI machine learning repository. University of California, School of Information and Computer Science, Irvine http://www. ics. uci. edu/~mlearn/MLRepository. htm. Accessed 24 June 2009.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 5
    • 0035575921 scopus 로고    scopus 로고
    • Nearest prototype classifier design: an experimental study
    • Bezdek JC, Kuncheva LI (2000) Nearest prototype classifier design: an experimental study. Int J Intell Syst 16(2): 1445-1473.
    • (2000) Int J Intell Syst , vol.16 , Issue.2 , pp. 1445-1473
    • Bezdek, J.C.1    Kuncheva, L.I.2
  • 6
    • 33644641221 scopus 로고    scopus 로고
    • On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining
    • Cano JR, Herrera F, Lozano M (2004) On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining. Appl Soft Comput 6: 323-332.
    • (2004) Appl Soft Comput , vol.6 , pp. 323-332
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 7
    • 19544373409 scopus 로고    scopus 로고
    • A framework for learning from distributed data using sufficient statistics and its application to learning decision trees
    • Caragea D, Silvescu A, Honavar V (2003) A framework for learning from distributed data using sufficient statistics and its application to learning decision trees. Int J Hybrid Intell Syst 1(1-2): 80-89.
    • (2003) Int J Hybrid Intell Syst , vol.1 , Issue.1-2 , pp. 80-89
    • Caragea, D.1    Silvescu, A.2    Honavar, V.3
  • 8
    • 0016127071 scopus 로고
    • Finding prototypes for nearest neighbor classifier
    • Chang Chin-Liang (1974) Finding prototypes for nearest neighbor classifier. IEEE Trans Comput 23(11): 1179-1184.
    • (1974) IEEE Trans Comput , vol.23 , Issue.11 , pp. 1179-1184
    • Chang, C.-L.1
  • 10
    • 70349445582 scopus 로고    scopus 로고
    • Distributed learning algorithm based on data Reduction
    • Porto, Potrugal
    • Czarnowski I, Jedrzejowicz P (2009) Distributed learning algorithm based on data Reduction. In: Proceedings of ICAART 2009, Porto, Potrugal, pp 198-203.
    • (2009) Proceedings of ICAART 2009 , pp. 198-203
    • Czarnowski, I.1    Jedrzejowicz, P.2
  • 12
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1(3): 131-156.
    • (1997) Intell Data Anal , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 15
    • 0001790815 scopus 로고
    • Knowledge discovery in databases-an overview
    • In: Piatetsky-Shapiro G, Matheus C, AAAI/MIT Press, Cambridge
    • Frawley WJ, Piatetsky-Shapiro G, Matheus C (1991) Knowledge discovery in databases-an overview. In: Piatetsky-Shapiro G, Matheus C, Knowledge discovery in databases. AAAI/MIT Press, Cambridge.
    • (1991) Knowledge Discovery In Databases
    • Frawley, W.J.1    Piatetsky-Shapiro, G.2    Matheus, C.3
  • 16
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32: 675-701.
    • (1937) J Am Stat Assoc , vol.32 , pp. 675-701
    • Friedman, M.1
  • 17
    • 78650350612 scopus 로고    scopus 로고
    • SBL-PM: Simple algorithm for selection of reference instances in similarity based methods
    • Bystra, Poland
    • Grudziński K, Duch W (2000) SBL-PM: Simple algorithm for selection of reference instances in similarity based methods. In: Proceedings of the intelligence systems, Bystra, Poland, pp 99-107.
    • (2000) Proceedings of the Intelligence Systems , pp. 99-107
    • Grudziński, K.1    Duch, W.2
  • 18
    • 4644260621 scopus 로고    scopus 로고
    • Sampling: knowing whole from its part
    • H. Liu and H. Motoda (Eds.), Dordrecht: Kluwer
    • Gu B, Hu F, Liu H (2001) Sampling: knowing whole from its part. In: Liu H, Motoda H (eds) Instance selection and construction for data mining. Kluwer, Dordrecht, pp 21-37.
    • (2001) Instance Selection and Construction for Data Mining , pp. 21-37
    • Gu, B.1    Hu, F.2    Liu, H.3
  • 20
    • 84931162639 scopus 로고
    • The condensed nearest neighbour rule
    • Hart PE (1968) The condensed nearest neighbour rule. IEEE Trans Inf Theory 14: 515-516.
    • (1968) IEEE Trans Inf Theory , vol.14 , pp. 515-516
    • Hart, P.E.1
  • 21
    • 80051708169 scopus 로고    scopus 로고
    • Instances selection algorithms in the conjunction with LVQ
    • M. H. Hamza (Ed.), Innsbruck: ACTA Press
    • Jankowski N, Grochowski M (2005) Instances selection algorithms in the conjunction with LVQ. In: Hamza MH (eds) Artificial intelligence and applications. ACTA Press, Innsbruck, p 453.
    • (2005) Artificial Intelligence and Applications , pp. 453
    • Jankowski, N.1    Grochowski, M.2
  • 22
    • 0002113656 scopus 로고    scopus 로고
    • Social learning algorithm as a tool for solving some difficult scheduling problems
    • Jȩdrzejowicz P (1999) Social learning algorithm as a tool for solving some difficult scheduling problems. Found Comput Decis Sci 24: 51-66.
    • (1999) Found Comput Decis Sci , vol.24 , pp. 51-66
    • Jȩdrzejowicz, P.1
  • 23
    • 0346331906 scopus 로고    scopus 로고
    • A brief taxonomy and ranking of creative prototype reduction schemes
    • Kim S-W, Oommen BJ (2003) A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Anal Appl 6: 232-244.
    • (2003) Pattern Anal Appl , vol.6 , pp. 232-244
    • Kim, S.-W.1    Oommen, B.J.2
  • 25
    • 0031999908 scopus 로고    scopus 로고
    • Nearest prototype classification: clustering, genetic algorithm or random search?
    • Kuncheva LI, Bezdek JC (1998) Nearest prototype classification: clustering, genetic algorithm or random search?. IEEE Trans Syst Man Cybern 28(1): 160-164.
    • (1998) IEEE Trans Syst Man Cybern , vol.28 , Issue.1 , pp. 160-164
    • Kuncheva, L.I.1    Bezdek, J.C.2
  • 30
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • University of California Press, Berkeley
    • MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, vol 1, pp 281-297.
    • (1967) Proceedings of 5th Berkeley Symposium On Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • Macqueen, J.B.1
  • 31
    • 41149085604 scopus 로고    scopus 로고
    • Robust projected clustering
    • doi:10.1007/s10115-007-0090-6
    • Moise G, Sander J, Ester M (2008) Robust projected clustering. Knowl Inf Syst 14: 273-298 doi: 10. 1007/s10115-007-0090-6.
    • (2008) Knowl Inf Syst , vol.14 , pp. 273-298
    • Moise, G.1    Sander, J.2    Ester, M.3
  • 32
    • 68049109494 scopus 로고    scopus 로고
    • Sample size and modeling accuracy of decision tree based data mining tools
    • Morgan J, Daugherty R, Hilchie A, Carey B (2003) Sample size and modeling accuracy of decision tree based data mining tools. Acad Inf Manage Sci J 6(2): 71-99.
    • (2003) Acad Inf Manage Sci J , vol.6 , Issue.2 , pp. 71-99
    • Morgan, J.1    Daugherty, R.2    Hilchie, A.3    Carey, B.4
  • 33
    • 58149475488 scopus 로고    scopus 로고
    • Particle swarm optimization for prototype reduction
    • Nanni L, Lumini A (2009) Particle swarm optimization for prototype reduction. Neurocomputing 72(4-6): 1092-1097.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 1092-1097
    • Nanni, L.1    Lumini, A.2
  • 37
    • 34748818341 scopus 로고    scopus 로고
    • Selecting representative examples and attributes by a genetic algorithm
    • Rozsypal A, Kubat M (2003) Selecting representative examples and attributes by a genetic algorithm. Intell Data Anal 7(4): 291-304.
    • (2003) Intell Data Anal , vol.7 , Issue.4 , pp. 291-304
    • Rozsypal, A.1    Kubat, M.2
  • 38
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithm
    • Skalak DB (1994) Prototype and feature selection by sampling and random mutation hill climbing algorithm. In: Proceedings of the international conference on machine learning, pp 293-301.
    • (1994) Proceedings of the International Conference On Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 39
    • 0030111094 scopus 로고    scopus 로고
    • LVQ combined with simulated annealing for optimal design of large-set reference models
    • Song HH, Lee SW (1996) LVQ combined with simulated annealing for optimal design of large-set reference models. Neural Netw 9(2): 329-336.
    • (1996) Neural Netw , vol.9 , Issue.2 , pp. 329-336
    • Song, H.H.1    Lee, S.W.2
  • 40
    • 0002072348 scopus 로고    scopus 로고
    • Clustering in object-oriented environment
    • Struyf A, Hubert M, Rousseeuw PJ (1996) Clustering in object-oriented environment. J Stat Softw 1(4): 1-30.
    • (1996) J Stat Softw , vol.1 , Issue.4 , pp. 1-30
    • Struyf, A.1    Hubert, M.2    Rousseeuw, P.J.3
  • 41
    • 0020848605 scopus 로고
    • Asynchronous procedures for parallel processing
    • Talukdar SN, Pyo SS, Giras T (1983) Asynchronous procedures for parallel processing. IEEE Trans PAS 102(11): 3652-3659.
    • (1983) IEEE Trans PAS , vol.102 , Issue.11 , pp. 3652-3659
    • Talukdar, S.N.1    Pyo, S.S.2    Giras, T.3
  • 42
    • 84855539535 scopus 로고    scopus 로고
    • The European Network of Excellence on Intelligence Technologies for Smart Adaptive Systems (EUNITE)-EUNITE World Competition in domain of Intelligent Technologies, Accessed 30 April 2002
    • The European Network of Excellence on Intelligence Technologies for Smart Adaptive Systems (EUNITE)-EUNITE World Competition in domain of Intelligent Technologies (2002). http://neuron. tuke. sk/competition2 (Accessed 30 April 2002).
    • (2002)
  • 43
    • 0016969272 scopus 로고
    • An experiment with the edited nearest-neighbour rule
    • Tomek I (1976) An experiment with the edited nearest-neighbour rule. IEEE Trans Syst Man Cybern 6(6): 448-452.
    • (1976) IEEE Trans Syst Man Cybern , vol.6 , Issue.6 , pp. 448-452
    • Tomek, I.1
  • 44
    • 78049450664 scopus 로고    scopus 로고
    • Multi-sorting algorithm for finding pairs of similar short substrings from large-scale string data
    • doi: 10. 1007/s10115-009-0271-6
    • Uno T (2009) Multi-sorting algorithm for finding pairs of similar short substrings from large-scale string data. Knowl Inf Syst. doi: 10. 1007/s10115-009-0271-6.
    • (2009) Knowl Inf Syst
    • Uno, T.1
  • 45
    • 77957583037 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced data sets
    • doi: 10. 1007/s10115-009-0198-y
    • Wang BX, Japkowicz N (2009) Boosting support vector machines for imbalanced data sets. Knowl Inf Syst. doi: 10. 1007/s10115-009-0198-y.
    • (2009) Knowl Inf Syst
    • Wang, B.X.1    Japkowicz, N.2
  • 47
    • 0033901276 scopus 로고    scopus 로고
    • An integrated instance-based learning algorithm
    • Wilson DR, Martinez TR (2000a) An integrated instance-based learning algorithm. Comput Intell 16: 1-28.
    • (2000) Comput Intell , vol.16 , pp. 1-28
    • Wilson, D.R.1    Martinez, T.R.2
  • 48
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithm
    • Wilson DR, Martinez TR (2000b) Reduction techniques for instance-based learning algorithm. Mach Learn 33(3): 257-286.
    • (2000) Mach Learn , vol.33 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 49
    • 76749147634 scopus 로고    scopus 로고
    • Using instance selection to combine multiple models learned from disjoint subsets
    • H. Liu and H. Motoda (Eds.), Dordrecht: Kluwer
    • Winton D, Pete E (2001) Using instance selection to combine multiple models learned from disjoint subsets. In: Liu H, Motoda H (eds) Instance selection and construction for data mining. Kluwer, Dordrecht.
    • (2001) Instance Selection and Construction for Data Mining
    • Winton, D.1    Pete, E.2
  • 52
    • 84855533814 scopus 로고    scopus 로고
    • Improvement in k-nearest neighbor classification
    • Springer, Berlin
    • Wu Y, Ianakiew KG, Govindraju V (2001) Improvement in k-nearest neighbor classification. In: Proceedings of ICARP 2001, LNCS 2013. Springer, Berlin, pp 222-229.
    • (2001) Proceedings of ICARP 2001, LNCS , vol.2013 , pp. 222-229
    • Wu, Y.1    Ianakiew, K.G.2    Govindraju, V.3
  • 54
    • 85132303221 scopus 로고    scopus 로고
    • Feature weighting and instance selection for collaborative filtering: an information-theoretic approach
    • Yu K, Xu Xiaowei, Ester M, Kriegel H-P (2004) Feature weighting and instance selection for collaborative filtering: an information-theoretic approach. Knowl Inf Syst 5(2): 201-224.
    • (2004) Knowl Inf Syst , vol.5 , Issue.2 , pp. 201-224
    • Yu, K.1    Xu, X.2    Ester, M.3    Kriegel, H.-P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.