메뉴 건너뛰기




Volumn 13, Issue 3, 2010, Pages 485-495

Support-vector regression for permeability prediction in a heterogeneous reservoir: A comparative study

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; FORECASTING; MULTILAYER NEURAL NETWORKS; PETROLEUM RESERVOIR ENGINEERING; PETROPHYSICS; PREDICTIVE ANALYTICS; PROFESSIONAL ASPECTS; RADIAL BASIS FUNCTION NETWORKS; SUPPORT VECTOR MACHINES; VECTORS; WELL LOGGING;

EID: 77952424965     PISSN: 10946470     EISSN: None     Source Type: Journal    
DOI: 10.2118/126339-PA     Document Type: Article
Times cited : (48)

References (40)
  • 1
    • 77149164466 scopus 로고    scopus 로고
    • Innovative data-driven Permeability prediction in a heterogeneous reservoir
    • Paper SPE 121159 presented at the, Amsterdam, 8-11 June, doi: 10.2118/121159-MS
    • Al-Anazi, A., Gates, I. D., and Azaiez, J. 2009. Innovative Data-Driven Permeability Prediction in a Heterogeneous Reservoir. Paper SPE 121159 presented at the EUROPEC/EAGE Conference and Exhibition, Amsterdam, 8-11 June, doi: 10.2118/121159-MS.
    • (2009) EUROPEC/EAGE Conference and Exhibition
    • Al-Anazi, A.1    Gates, I.D.2    Azaiez, J.3
  • 4
    • 0002400882 scopus 로고    scopus 로고
    • Simplified support vector decision rules
    • ed. L. Saitta, L., San Mateo, CA: Morgan Kaufmann Publishers
    • Burges, C. J. C. 1996. Simplified support vector decision rules. In Proceedings of the International Conference on Machine Learning, ed. L. Saitta, L., 71-77. San Mateo, CA: Morgan Kaufmann Publishers.
    • (1996) Proceedings of the International Conference on Machine Learning , pp. 71-77
    • Burges, C.J.C.1
  • 5
    • 84898957872 scopus 로고    scopus 로고
    • Improving the Accuracy and speed of support vector learning machines
    • ed. M. C. Mozer, M. I. Jordan, and T. Petsche, Cambridge, Massachusetts: MIT Press
    • Burges, C. J. C. and Scholkopf, B. 1997. Improving the accuracy and speed of support vector learning machines. In Advances in Neural Information Processing Systems 9, ed. M. C. Mozer, M. I. Jordan, and T. Petsche, 375-381. Cambridge, Massachusetts: MIT Press.
    • (1997) Advances in Neural. Information Processing Systems , vol.9 , pp. 375-381
    • Burges, C.J.C.1    Scholkopf, B.2
  • 6
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen, S., Cowan, C. F. N., and Grant, P. M. 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2(2):302-309.
    • (1991) IEEE Transactions on Neural. Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 7
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C. and Vapnik, V. 1995. Support-Vector Networks. Machine Learning 20:273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 0033745185 scopus 로고    scopus 로고
    • Litho-facies and Permeability prediction from electrical logs using fuzzy logic
    • SPE-65411-PA. doi: 10.2118/65411-PA
    • Cuddy, S. J. 2000. Litho-Facies and Permeability Prediction From Electrical Logs Using Fuzzy Logic. SPE Res Eval & Eng 3(4):319-324. SPE-65411-PA. doi: 10.2118/65411-PA.
    • (2000) SPE Res. Eval & Eng. , vol.3 , Issue.4 , pp. 319-324
    • Cuddy, S.J.1
  • 11
    • 0005396750 scopus 로고
    • Automatic capacity tuning of very large VC-dimension classifiers
    • ed. S. J. Hanson, J. D. Cowan, and C. L. Giles, San Mateo, California: Morgan Kaufmann Publishers
    • Guyon, I., Boser, B., and Vapnik, V. 1993. Automatic capacity tuning of very large VC-dimension classifiers. In Advances in Neural Information Processing Systems 5, ed. S. J. Hanson, J. D. Cowan, and C. L. Giles, 147-155. San Mateo, California: Morgan Kaufmann Publishers.
    • (1993) Advances in Neural. Information Processing Systems , vol.5 , pp. 147-155
    • Guyon, I.1    Boser, B.2    Vapnik, V.3
  • 13
    • 0035254822 scopus 로고    scopus 로고
    • An integrated neuralfuzzy-genetic-algorithm using hyper-surface membership functions to predict Permeability in Petroleum reservoirs
    • doi: 10.1016/S0952-1976 00 00048-8
    • Huang, Y, Gedeon, T. D., and Wong, P. M. 2001. An integrated neuralfuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs. Engineering Applications of Artificial Intelligence 14(1):15-21. doi: 10.1016/S0952-1976 (00) 00048-8.
    • (2001) Engineering Applications of Artificial Intelligence , vol.14 , Issue.1 , pp. 15-21
    • Huang, Y.1    Gedeon, T.D.2    Wong, P.M.3
  • 14
    • 0030107415 scopus 로고    scopus 로고
    • Permeability prediction with artificial Neural network modelling in the venture gas field, offshore eastern canada
    • doi: 10.1190/1.1443970
    • Huang, Z., Shimeld, J., Williamson, M., and Katsube, J. 1996. Permeability prediction with artificial neural network modelling in the Venture gas field, offshore eastern Canada. Geophysics 61(2):422-436. doi: 10.1190/1.1443970.
    • (1996) Geophysics , vol.61 , Issue.2 , pp. 422-436
    • Huang, Z.1    Shimeld, J.2    Williamson, M.3    Katsube, J.4
  • 15
    • 0004262735 scopus 로고
    • New York: Wiley Series in Probability and Statistics, Wiley-Interscience
    • Huber, P. J. 1981. Robust Statistics. New York: Wiley Series in Probability and Statistics, Wiley-Interscience.
    • (1981) Robust Statistics
    • Huber, P.J.1
  • 17
    • 33847059431 scopus 로고    scopus 로고
    • Support vector machines-an introduction
    • ed. L. Wang, Chap. 1, 1-47. Heidelberg, Germany: Studies in Fuzziness and Soft Computing, Springer-Verlag
    • Kecman, V. 2005. Support Vector Machines-An Introduction. In Support Vector Machines: Theory and Applications, ed. L. Wang, Chap. 1, 1-47. Heidelberg, Germany: Studies in Fuzziness and Soft Computing, Springer-Verlag.
    • (2005) Support Vector Machines: Theory and Applications
    • Kecman, V.1
  • 20
    • 84956628443 scopus 로고    scopus 로고
    • Predicting time series with support vector machines
    • ed. W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, No. 1327, 999-1004. Berlin, Germany: Lecture Notes in Computer Science, Springer 1997
    • Müller, K.-R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., and Vapnik, V. 1997. Predicting time series with support vector machines. In Artificial Neural Networks-ICANN'97, Lausanne, Switzerland, October 8-10, 1997, ed. W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, No. 1327, 999-1004. Berlin, Germany: Lecture Notes in Computer Science, Springer.
    • (1997) Artificial Neural. Networks-ICANN'97, Lausanne, Switzerland, October , pp. 8-10
    • Müller, K.-R.1    Smola, A.2    Rätsch, G.3    Schölkopf, B.4    Kohlmorgen, J.5    Vapnik, V.6
  • 21
    • 33748697701 scopus 로고    scopus 로고
    • The development of a new statistical technique for relating financial information to stock market returns
    • Peng, K.-L., Wu, C.-H., and Goo, Y.-J. 2004. The Development of a New Statistical Technique for Relating Financial Information to Stock Market Returns. International Journal of Management 21(4):492-505.
    • (2004) International Journal of Management , vol.21 , Issue.4 , pp. 492-505
    • Peng, K.-L.1    Wu, C.-H.2    Goo, Y.-J.3
  • 22
    • 0029475922 scopus 로고
    • Predicting Permeability from porosity using artificial Neural networks
    • Rogers, S. J., Chen, H. C., Kopaska-Merkel, D. C., and Fang, J. H. 1995. Predicting permeability from porosity using artificial neural networks. AAPG Bulletin 79(12):1786-1797.
    • (1995) AAPG Bulletin , vol.79 , Issue.12 , pp. 1786-1797
    • Rogers, S.J.1    Chen, H.C.2    Kopaska-Merkel, D.C.3    Fang, J.H.4
  • 23
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Foundations, ed. D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Cambridge, Massachusetts: MIT Press
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning internal representations by error propagation. In Parallel Distributed Processing, Vol. I: Foundations, ed. D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, 318-362. Cambridge, Massachusetts: MIT Press.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 26
    • 84902142380 scopus 로고    scopus 로고
    • Incorporating invariances in support vector learning machines
    • Bochum, Germany, July, 16-19 ed. C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, Berlin, Germany: Lecture Notes in Computer Science, Springer 1996
    • Scholköpf, B., Burges, C., and Vapnik, V. 1996. Incorporating Invariances in Support Vector Learning Machines. In Artificial Neural Networks: 6th International Conference Proceedings/ICANN'96, Bochum, Germany, July 16-19, 1996, ed. C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, No. 1112, 47-52. Berlin, Germany: Lecture Notes in Computer Science, Springer.
    • (1996) Artificial Neural. Networks: 6th International Conference Proceedings/ICANN'96 , Issue.1112 , pp. 47-52
    • Scholköpf, B.1    Burges, C.2    Vapnik, V.3
  • 30
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • doi: 10.1016/S0893-6080 98 00032-X
    • Smola, A., Schölkopf, B., and Müller, K.-R. 1998. The connection between regularization operators and support vector kernels. Neural Networks 11(4):637-649. doi: 10.1016/S0893-6080 (98) 00032-X.
    • (1998) Neural. Networks , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.-R.3
  • 31
    • 0026254768 scopus 로고
    • A general regression neural network
    • DOI 10.1109/72.97934
    • Specht, D. 1991. A general regression neural network. IEEE Transactions on Neural Networks 2(6):568-576. doi: 10.1109/72.97934. (Pubitemid 23563887)
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht Donald, F.1
  • 32
    • 68949128341 scopus 로고    scopus 로고
    • New York: Information Science and Statistics, Springer Science+Business Media
    • Steinwart, I. and Christmann, A. 2008. Support Vector Machines. New York: Information Science and Statistics, Springer Science+Business Media.
    • (2008) Support Vector Machines
    • Steinwart, I.1    Christmann, A.2
  • 33
    • 22244491374 scopus 로고    scopus 로고
    • Improved Permeability estimation through use of fuzzy logic in a carbonate reservoir from southwest
    • Iran. Paper SPE 93269 presented at the, Bahrain, March, doi: 10.2118/93269-MS
    • Taghavi, A. A. 2005. Improved Permeability Estimation through Use of Fuzzy Logic in a Carbonate Reservoir from Southwest, Iran. Paper SPE 93269 presented at the SPE Middle East Oil and Gas Show and Conference, Bahrain, 12-15 March, doi: 10.2118/93269-MS.
    • (2005) SPE Middle East Oil and Gas Show and Conference , pp. 12-15
    • Taghavi, A.A.1
  • 37
    • 0004272441 scopus 로고
    • Theory of pattern recognition
    • Russian. Nauka, Moscow. German translation: Wapnik, W. and Tscherwonenkis, A, Berlin, Germany: Akademie-Verlag
    • Vapnik, V. and Chervonenkis, A. 1974. Theory of Pattern Recognition (in Russian). Nauka, Moscow. (German translation: Wapnik, W. and Tscherwonenkis, A. 1979. Theorie der Zeichenerkennung. Berlin, Germany: Akademie-Verlag).
    • (1974) Theorie der Zeichenerkennung
    • Vapnik, V.1    Chervonenkis, A.2
  • 38
    • 0010864753 scopus 로고
    • Pattern recognition using generalized portrait method
    • Vapnik, V. and Lerner, A. 1963. Pattern recognition using generalized portrait method. Automation and Remote Control 24:774-780.
    • (1963) Automation and Remote Control , vol.24 , pp. 774-780
    • Vapnik, V.1    Lerner, A.2
  • 39
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • ed. M. C. Mozer, M. I. Jordan, and T. Petsche, Cambridge, Massachusetts: MIT Press
    • Vapnik, V., Golowich, S., and Smola, A. 1997. Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems 9, ed. M. C. Mozer, M. I. Jordan, and T. Petsche, 281-287. Cambridge, Massachusetts: MIT Press.
    • (1997) Advances in Neural. Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.