-
1
-
-
77149164466
-
Innovative data-driven Permeability prediction in a heterogeneous reservoir
-
Paper SPE 121159 presented at the, Amsterdam, 8-11 June, doi: 10.2118/121159-MS
-
Al-Anazi, A., Gates, I. D., and Azaiez, J. 2009. Innovative Data-Driven Permeability Prediction in a Heterogeneous Reservoir. Paper SPE 121159 presented at the EUROPEC/EAGE Conference and Exhibition, Amsterdam, 8-11 June, doi: 10.2118/121159-MS.
-
(2009)
EUROPEC/EAGE Conference and Exhibition
-
-
Al-Anazi, A.1
Gates, I.D.2
Azaiez, J.3
-
2
-
-
64349106046
-
Support vector regression
-
Basak, D., Pal, S., and Patranabis, D. C. 2007. Support Vector Regression. Neural Information Processing-Letters and Reviews 10(10):203-224.
-
(2007)
Neural. Information Processing-Letters and Reviews
, vol.10
, Issue.10
, pp. 203-224
-
-
Basak, D.1
Pal, S.2
Patranabis, D.C.3
-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
ed. D. Haussler, New York: ACM Press
-
Boser, B. E., Guyon, I. M., and Vapnik, V. N. 1992. A training algorithm for optimal margin classifiers. 3tIn Proceedings of the fifth annual workshop on Computational learning theory, ed. D. Haussler, 144-152. New York: ACM Press.
-
(1992)
Proceedings of the Fifth Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
4
-
-
0002400882
-
Simplified support vector decision rules
-
ed. L. Saitta, L., San Mateo, CA: Morgan Kaufmann Publishers
-
Burges, C. J. C. 1996. Simplified support vector decision rules. In Proceedings of the International Conference on Machine Learning, ed. L. Saitta, L., 71-77. San Mateo, CA: Morgan Kaufmann Publishers.
-
(1996)
Proceedings of the International Conference on Machine Learning
, pp. 71-77
-
-
Burges, C.J.C.1
-
5
-
-
84898957872
-
Improving the Accuracy and speed of support vector learning machines
-
ed. M. C. Mozer, M. I. Jordan, and T. Petsche, Cambridge, Massachusetts: MIT Press
-
Burges, C. J. C. and Scholkopf, B. 1997. Improving the accuracy and speed of support vector learning machines. In Advances in Neural Information Processing Systems 9, ed. M. C. Mozer, M. I. Jordan, and T. Petsche, 375-381. Cambridge, Massachusetts: MIT Press.
-
(1997)
Advances in Neural. Information Processing Systems
, vol.9
, pp. 375-381
-
-
Burges, C.J.C.1
Scholkopf, B.2
-
6
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
Chen, S., Cowan, C. F. N., and Grant, P. M. 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2(2):302-309.
-
(1991)
IEEE Transactions on Neural. Networks
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.F.N.2
Grant, P.M.3
-
7
-
-
34249753618
-
Support-vector networks
-
Cortes, C. and Vapnik, V. 1995. Support-Vector Networks. Machine Learning 20:273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
9
-
-
0033745185
-
Litho-facies and Permeability prediction from electrical logs using fuzzy logic
-
SPE-65411-PA. doi: 10.2118/65411-PA
-
Cuddy, S. J. 2000. Litho-Facies and Permeability Prediction From Electrical Logs Using Fuzzy Logic. SPE Res Eval & Eng 3(4):319-324. SPE-65411-PA. doi: 10.2118/65411-PA.
-
(2000)
SPE Res. Eval & Eng.
, vol.3
, Issue.4
, pp. 319-324
-
-
Cuddy, S.J.1
-
11
-
-
0005396750
-
Automatic capacity tuning of very large VC-dimension classifiers
-
ed. S. J. Hanson, J. D. Cowan, and C. L. Giles, San Mateo, California: Morgan Kaufmann Publishers
-
Guyon, I., Boser, B., and Vapnik, V. 1993. Automatic capacity tuning of very large VC-dimension classifiers. In Advances in Neural Information Processing Systems 5, ed. S. J. Hanson, J. D. Cowan, and C. L. Giles, 147-155. San Mateo, California: Morgan Kaufmann Publishers.
-
(1993)
Advances in Neural. Information Processing Systems
, vol.5
, pp. 147-155
-
-
Guyon, I.1
Boser, B.2
Vapnik, V.3
-
13
-
-
0035254822
-
An integrated neuralfuzzy-genetic-algorithm using hyper-surface membership functions to predict Permeability in Petroleum reservoirs
-
doi: 10.1016/S0952-1976 00 00048-8
-
Huang, Y, Gedeon, T. D., and Wong, P. M. 2001. An integrated neuralfuzzy-genetic-algorithm using hyper-surface membership functions to predict permeability in petroleum reservoirs. Engineering Applications of Artificial Intelligence 14(1):15-21. doi: 10.1016/S0952-1976 (00) 00048-8.
-
(2001)
Engineering Applications of Artificial Intelligence
, vol.14
, Issue.1
, pp. 15-21
-
-
Huang, Y.1
Gedeon, T.D.2
Wong, P.M.3
-
14
-
-
0030107415
-
Permeability prediction with artificial Neural network modelling in the venture gas field, offshore eastern canada
-
doi: 10.1190/1.1443970
-
Huang, Z., Shimeld, J., Williamson, M., and Katsube, J. 1996. Permeability prediction with artificial neural network modelling in the Venture gas field, offshore eastern Canada. Geophysics 61(2):422-436. doi: 10.1190/1.1443970.
-
(1996)
Geophysics
, vol.61
, Issue.2
, pp. 422-436
-
-
Huang, Z.1
Shimeld, J.2
Williamson, M.3
Katsube, J.4
-
15
-
-
0004262735
-
-
New York: Wiley Series in Probability and Statistics, Wiley-Interscience
-
Huber, P. J. 1981. Robust Statistics. New York: Wiley Series in Probability and Statistics, Wiley-Interscience.
-
(1981)
Robust Statistics
-
-
Huber, P.J.1
-
16
-
-
0003573483
-
-
MSc thesis, Department of Mathematics, University of Chicago, Chicago, Illinois
-
Karush, W. 1939. Minima of functions of several variables with inequalities as side constraints. MSc thesis, Department of Mathematics, University of Chicago, Chicago, Illinois.
-
(1939)
Minima of Functions of Several Variables with Inequalities as Side Constraints
-
-
Karush, W.1
-
17
-
-
33847059431
-
Support vector machines-an introduction
-
ed. L. Wang, Chap. 1, 1-47. Heidelberg, Germany: Studies in Fuzziness and Soft Computing, Springer-Verlag
-
Kecman, V. 2005. Support Vector Machines-An Introduction. In Support Vector Machines: Theory and Applications, ed. L. Wang, Chap. 1, 1-47. Heidelberg, Germany: Studies in Fuzziness and Soft Computing, Springer-Verlag.
-
(2005)
Support Vector Machines: Theory and Applications
-
-
Kecman, V.1
-
20
-
-
84956628443
-
Predicting time series with support vector machines
-
ed. W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, No. 1327, 999-1004. Berlin, Germany: Lecture Notes in Computer Science, Springer 1997
-
Müller, K.-R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., and Vapnik, V. 1997. Predicting time series with support vector machines. In Artificial Neural Networks-ICANN'97, Lausanne, Switzerland, October 8-10, 1997, ed. W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, No. 1327, 999-1004. Berlin, Germany: Lecture Notes in Computer Science, Springer.
-
(1997)
Artificial Neural. Networks-ICANN'97, Lausanne, Switzerland, October
, pp. 8-10
-
-
Müller, K.-R.1
Smola, A.2
Rätsch, G.3
Schölkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
21
-
-
33748697701
-
The development of a new statistical technique for relating financial information to stock market returns
-
Peng, K.-L., Wu, C.-H., and Goo, Y.-J. 2004. The Development of a New Statistical Technique for Relating Financial Information to Stock Market Returns. International Journal of Management 21(4):492-505.
-
(2004)
International Journal of Management
, vol.21
, Issue.4
, pp. 492-505
-
-
Peng, K.-L.1
Wu, C.-H.2
Goo, Y.-J.3
-
22
-
-
0029475922
-
Predicting Permeability from porosity using artificial Neural networks
-
Rogers, S. J., Chen, H. C., Kopaska-Merkel, D. C., and Fang, J. H. 1995. Predicting permeability from porosity using artificial neural networks. AAPG Bulletin 79(12):1786-1797.
-
(1995)
AAPG Bulletin
, vol.79
, Issue.12
, pp. 1786-1797
-
-
Rogers, S.J.1
Chen, H.C.2
Kopaska-Merkel, D.C.3
Fang, J.H.4
-
23
-
-
0000646059
-
Learning internal representations by error propagation
-
Foundations, ed. D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Cambridge, Massachusetts: MIT Press
-
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning internal representations by error propagation. In Parallel Distributed Processing, Vol. I: Foundations, ed. D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, 318-362. Cambridge, Massachusetts: MIT Press.
-
(1986)
Parallel Distributed Processing
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
24
-
-
0004094721
-
Learning with kernels: Support vector machines, regularization, optimization, and beyond
-
MIT Press
-
Schölkopf, B. and Smola, A. 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, Massachusetts: Adaptive Computation and Machine Learning, MIT Press.
-
(2002)
Cambridge, Massachusetts: Adaptive Computation and Machine Learning
-
-
Schölkopf, B.1
Smola, A.2
-
25
-
-
85118436573
-
Extracting support data for a given task
-
ed. U. M. Fayyad and R. Uthurusamy, Menlo Park, California: AAAI Press
-
Scholkopf, B., Burges, C., and Vapnik, V. 1995. Extracting support data for a given task. In Proceedings of the First International Conference on Knowledge Discovery and Data Mining, ed. U. M. Fayyad and R. Uthurusamy, 252-257. Menlo Park, California: AAAI Press.
-
(1995)
Proceedings of the First International Conference on Knowledge Discovery and Data Mining
, pp. 252-257
-
-
Scholkopf, B.1
Burges, C.2
Vapnik, V.3
-
26
-
-
84902142380
-
Incorporating invariances in support vector learning machines
-
Bochum, Germany, July, 16-19 ed. C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, Berlin, Germany: Lecture Notes in Computer Science, Springer 1996
-
Scholköpf, B., Burges, C., and Vapnik, V. 1996. Incorporating Invariances in Support Vector Learning Machines. In Artificial Neural Networks: 6th International Conference Proceedings/ICANN'96, Bochum, Germany, July 16-19, 1996, ed. C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, No. 1112, 47-52. Berlin, Germany: Lecture Notes in Computer Science, Springer.
-
(1996)
Artificial Neural. Networks: 6th International Conference Proceedings/ICANN'96
, Issue.1112
, pp. 47-52
-
-
Scholköpf, B.1
Burges, C.2
Vapnik, V.3
-
27
-
-
0032594954
-
Input space vs. Feature space in kernel-based methods
-
Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller K.-R., Rätsch G., and Smola, A. 1999. Input Space vs. Feature Space in Kernel-Based Methods. IEEE Transactions on Neural Networks 10(5):1000-1017.
-
(1999)
IEEE Transactions on Neural. Networks
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.3
Knirsch, P.4
Müller, K.-R.5
Rätsch, G.6
Smola, A.7
-
28
-
-
17444438778
-
New support vector algorithms
-
Schölkopf, B., Smola, A., Williamson, R. C., and Bartlett, P. L. 2000. New Support Vector Algorithms. Neural Computation 12(2):1207-1245.
-
(2000)
Neural. Computation
, vol.12
, Issue.2
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A.2
Williamson, R.C.3
Bartlett, P.L.4
-
30
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
doi: 10.1016/S0893-6080 98 00032-X
-
Smola, A., Schölkopf, B., and Müller, K.-R. 1998. The connection between regularization operators and support vector kernels. Neural Networks 11(4):637-649. doi: 10.1016/S0893-6080 (98) 00032-X.
-
(1998)
Neural. Networks
, vol.11
, Issue.4
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.-R.3
-
31
-
-
0026254768
-
A general regression neural network
-
DOI 10.1109/72.97934
-
Specht, D. 1991. A general regression neural network. IEEE Transactions on Neural Networks 2(6):568-576. doi: 10.1109/72.97934. (Pubitemid 23563887)
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, Issue.6
, pp. 568-576
-
-
Specht Donald, F.1
-
32
-
-
68949128341
-
-
New York: Information Science and Statistics, Springer Science+Business Media
-
Steinwart, I. and Christmann, A. 2008. Support Vector Machines. New York: Information Science and Statistics, Springer Science+Business Media.
-
(2008)
Support Vector Machines
-
-
Steinwart, I.1
Christmann, A.2
-
33
-
-
22244491374
-
Improved Permeability estimation through use of fuzzy logic in a carbonate reservoir from southwest
-
Iran. Paper SPE 93269 presented at the, Bahrain, March, doi: 10.2118/93269-MS
-
Taghavi, A. A. 2005. Improved Permeability Estimation through Use of Fuzzy Logic in a Carbonate Reservoir from Southwest, Iran. Paper SPE 93269 presented at the SPE Middle East Oil and Gas Show and Conference, Bahrain, 12-15 March, doi: 10.2118/93269-MS.
-
(2005)
SPE Middle East Oil and Gas Show and Conference
, pp. 12-15
-
-
Taghavi, A.A.1
-
37
-
-
0004272441
-
Theory of pattern recognition
-
Russian. Nauka, Moscow. German translation: Wapnik, W. and Tscherwonenkis, A, Berlin, Germany: Akademie-Verlag
-
Vapnik, V. and Chervonenkis, A. 1974. Theory of Pattern Recognition (in Russian). Nauka, Moscow. (German translation: Wapnik, W. and Tscherwonenkis, A. 1979. Theorie der Zeichenerkennung. Berlin, Germany: Akademie-Verlag).
-
(1974)
Theorie der Zeichenerkennung
-
-
Vapnik, V.1
Chervonenkis, A.2
-
38
-
-
0010864753
-
Pattern recognition using generalized portrait method
-
Vapnik, V. and Lerner, A. 1963. Pattern recognition using generalized portrait method. Automation and Remote Control 24:774-780.
-
(1963)
Automation and Remote Control
, vol.24
, pp. 774-780
-
-
Vapnik, V.1
Lerner, A.2
-
39
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
ed. M. C. Mozer, M. I. Jordan, and T. Petsche, Cambridge, Massachusetts: MIT Press
-
Vapnik, V., Golowich, S., and Smola, A. 1997. Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems 9, ed. M. C. Mozer, M. I. Jordan, and T. Petsche, 281-287. Cambridge, Massachusetts: MIT Press.
-
(1997)
Advances in Neural. Information Processing Systems
, vol.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
|