메뉴 건너뛰기




Volumn 30, Issue 1, 2012, Pages 135-154

A general insight into the effect of neuron structure on classification

Author keywords

Classification; Iris data classification; Multilayer perceptron (MLP); Neuron structure; Nonlinear input mapping; Nonmonotonic activation function

Indexed keywords


EID: 84855549012     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-011-0392-6     Document Type: Article
Times cited : (7)

References (37)
  • 2
    • 10244235219 scopus 로고    scopus 로고
    • An activation function adapting training algorithm for sigmoidal feedforward networks
    • Chandra P, Singh Y (2004) An activation function adapting training algorithm for sigmoidal feedforward networks. Neurocomputing 61: 429-437.
    • (2004) Neurocomputing , vol.61 , pp. 429-437
    • Chandra, P.1    Singh, Y.2
  • 3
    • 0036555952 scopus 로고    scopus 로고
    • Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks
    • Daqia G, Genxinga Y (2003) Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks. Pattern Recognit 36: 869-878.
    • (2003) Pattern Recognit , vol.36 , pp. 869-878
    • Daqia, G.1    Genxinga, Y.2
  • 4
    • 22844434823 scopus 로고    scopus 로고
    • Classification methodologies of multilayer perceptrons with sigmoid activation functions
    • Daqi G, Yan J (2005) Classification methodologies of multilayer perceptrons with sigmoid activation functions. Pattern Recognit 38: 1469-1482.
    • (2005) Pattern Recognit , vol.38 , pp. 1469-1482
    • Daqi, G.1    Yan, J.2
  • 5
    • 0000221271 scopus 로고
    • Products units: a computationally powerful and biologically plausible extension to backpropagation networks
    • Durbin R, Rumelhart D (1989) Products units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1: 133-142.
    • (1989) Neural Comput , vol.1 , pp. 133-142
    • Durbin, R.1    Rumelhart, D.2
  • 6
    • 0000400323 scopus 로고    scopus 로고
    • Survey of neural transfer functions
    • Duch W, Janhowski N (1999) Survey of neural transfer functions. Neural Comput 2: 163-212.
    • (1999) Neural Comput , vol.2 , pp. 163-212
    • Duch, W.1    Janhowski, N.2
  • 7
    • 52949151520 scopus 로고    scopus 로고
    • Novel neuronal activation functions for feedforward neural networks
    • Efe M (2008) Novel neuronal activation functions for feedforward neural networks. Neural Process Lett 8: 63-79.
    • (2008) Neural Process Lett , vol.8 , pp. 63-79
    • Efe, M.1
  • 8
    • 0032029357 scopus 로고    scopus 로고
    • Multilayer neural networks and Bayes decision theory
    • Funahashi K (1998) Multilayer neural networks and Bayes decision theory. Neural Netw 11: 209-213.
    • (1998) Neural Netw , vol.11 , pp. 209-213
    • Funahashi, K.1
  • 9
    • 33644541524 scopus 로고    scopus 로고
    • Call classification using recurrent neural networks, support vector machines and finite state automata
    • Garfield S, Wermter S (2006) Call classification using recurrent neural networks, support vector machines and finite state automata. Knowl Inf Syst 9: 131-156.
    • (2006) Knowl Inf Syst , vol.9 , pp. 131-156
    • Garfield, S.1    Wermter, S.2
  • 10
    • 0025507332 scopus 로고
    • On the decision regions of multilayer perceptrons
    • Gibson GJ, Cowan CFN (1990) On the decision regions of multilayer perceptrons. In: Proceedings of IEEE 78(9): 1590-1594.
    • (1990) Proceedings of IEEE , vol.78 , Issue.9 , pp. 1590-1594
    • Gibson, G.J.1    Cowan, C.F.N.2
  • 11
    • 0032643084 scopus 로고    scopus 로고
    • Multilayer feedforward networks with adaptive spline activation function
    • Guarnieri S, Piazza F, Uncini A (1999) Multilayer feedforward networks with adaptive spline activation function. IEEE Trans Neural Netw 10: 672-684.
    • (1999) IEEE Trans Neural Netw , vol.10 , pp. 672-684
    • Guarnieri, S.1    Piazza, F.2    Uncini, A.3
  • 12
    • 71649107625 scopus 로고    scopus 로고
    • Combined projection and kernel basis functions for classification in evolutionary neural networks
    • Gutierrez PA, Hervas C, Carbonero M et al (2009) Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing 72: 2731-2742.
    • (2009) Neurocomputing , vol.72 , pp. 2731-2742
    • Gutierrez, P.A.1    Hervas, C.2    Carbonero, M.3
  • 16
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Homik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4: 251-257.
    • (1991) Neural Netw , vol.4 , pp. 251-257
    • Homik, K.1
  • 17
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • Homik K (1993) Some new results on neural network approximation. Neural Netw 6: 1069-1072.
    • (1993) Neural Netw , vol.6 , pp. 1069-1072
    • Homik, K.1
  • 18
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • Huang SC, Huang YF (1991) Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans Neural Netw 2: 47-55.
    • (1991) IEEE Trans Neural Netw , vol.2 , pp. 47-55
    • Huang, S.C.1    Huang, Y.F.2
  • 19
    • 0034187311 scopus 로고    scopus 로고
    • Classification ability of single hidden layer feedforward neural networks
    • Huang GB, Chen YQ, Babri HA (2000) Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw 11: 799-801.
    • (2000) IEEE Trans Neural Netw , vol.11 , pp. 799-801
    • Huang, G.B.1    Chen, Y.Q.2    Babri, H.A.3
  • 21
    • 0002748218 scopus 로고
    • How neural nets work
    • D. Anderson (Ed.), New York: American Institute of Physics
    • Lapedes A, Farber R (1988) How neural nets work. In: Anderson D (eds) Neural information processing systems. American Institute of Physics, New York, pp 442-456.
    • (1988) Neural Information Processing Systems , pp. 442-456
    • Lapedes, A.1    Farber, R.2
  • 22
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M, Lin VY, Pinkus A et al (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6: 861-867.
    • (1993) Neural Netw , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3
  • 23
    • 70350539300 scopus 로고    scopus 로고
    • Parameter determination and feature selection for back- propagation network by particle swarm optimization
    • Lin SW, Chen SC, Wu WJ et al (2009) Parameter determination and feature selection for back- propagation network by particle swarm optimization. Knowl Inf Syst 21: 249-266.
    • (2009) Knowl Inf Syst , vol.21 , pp. 249-266
    • Lin, S.W.1    Chen, S.C.2    Wu, W.J.3
  • 24
    • 40649091560 scopus 로고    scopus 로고
    • Two k-winners-take-all networks with discontinuous activation functions
    • Liu Q, Wang J (2008) Two k-winners-take-all networks with discontinuous activation functions. Neural Netw 21: 406-413.
    • (2008) Neural Netw , vol.21 , pp. 406-413
    • Liu, Q.1    Wang, J.2
  • 25
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • Lippmann RP (1989) Pattern classification using neural networks. IEEE Commun Mag 27: 47-64.
    • (1989) IEEE Commun Mag , vol.27 , pp. 47-64
    • Lippmann, R.P.1
  • 26
    • 0030198925 scopus 로고    scopus 로고
    • Characterization of a class of sigmoid functions with applications to neural networks
    • Menon A, Mehrotra K, Mohan CK et al (1996) Characterization of a class of sigmoid functions with applications to neural networks. Neural Netw 9: 819-835.
    • (1996) Neural Netw , vol.9 , pp. 819-835
    • Menon, A.1    Mehrotra, K.2    Mohan, C.K.3
  • 27
    • 0026868102 scopus 로고
    • Functional-link net computing: theory, system architecture, and functionalities
    • Pao YH, Takefuji Y (1992) Functional-link net computing: theory, system architecture, and functionalities. IEEE Comput 25: 76-79.
    • (1992) IEEE Comput , vol.25 , pp. 76-79
    • Pao, Y.H.1    Takefuji, Y.2
  • 28
    • 67349199540 scopus 로고    scopus 로고
    • Multiresolution-based bilinear recurrent neural network
    • Park DC (2009) Multiresolution-based bilinear recurrent neural network. Knowl Inf Syst 19: 235-248.
    • (2009) Knowl Inf Syst , vol.19 , pp. 235-248
    • Park, D.C.1
  • 29
    • 0342843502 scopus 로고
    • Artificial neural networks with adaptive polynomial activation function
    • Bejing
    • Piazza F, Uncini A, Zenobi M (1993) Artificial neural networks with adaptive polynomial activation function. In: Proceeding of the IJCNN, Bejing, pp 343-349.
    • (1993) Proceeding of the IJCNN , pp. 343-349
    • Piazza, F.1    Uncini, A.2    Zenobi, M.3
  • 30
    • 80052398296 scopus 로고    scopus 로고
    • Multi-resolution boosting for classification and regression problems
    • doi: 10. 1007/s10115-010-0358-0
    • Reddy CK, Park JH (2010) Multi-resolution boosting for classification and regression problems. Knowl Inf Syst. doi: 10. 1007/s10115-010-0358-0.
    • (2010) Knowl Inf Syst
    • Reddy, C.K.1    Park, J.H.2
  • 31
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2: 568-576.
    • (1991) IEEE Trans Neural Netw , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 32
    • 0038648742 scopus 로고    scopus 로고
    • A class +1 sigmoidal activation functions for FANNs
    • Singh Y, Chandra P (2003) A class +1 sigmoidal activation functions for FANNs. J Econ Dyn Control 28: 183-187.
    • (2003) J Econ Dyn Control , vol.28 , pp. 183-187
    • Singh, Y.1    Chandra, P.2
  • 33
    • 0033353812 scopus 로고    scopus 로고
    • Neural networks with periodic and monotonic activation functions: A comparative study in classification problems
    • Sopena JM, Romero E, Alquezar R (1999) Neural networks with periodic and monotonic activation functions: a comparative study in classification problems. In: International conference on artificial neural networks, pp. 323-328.
    • (1999) International Conference On Artificial Neural Networks , pp. 323-328
    • Sopena, J.M.1    Romero, E.2    Alquezar, R.3
  • 35
    • 0032029155 scopus 로고    scopus 로고
    • Learning and approximation capabilities of adaptive spline activation function neural networks
    • Vecci L, Piazza F, Uncini A (1998) Learning and approximation capabilities of adaptive spline activation function neural networks. Neural Netw 1: 259-270.
    • (1998) Neural Netw , vol.1 , pp. 259-270
    • Vecci, L.1    Piazza, F.2    Uncini, A.3
  • 36
    • 0032853385 scopus 로고    scopus 로고
    • Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery
    • Vaughn ML (1999) Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery. Neural Netw 12: 1259-1271.
    • (1999) Neural Netw , vol.12 , pp. 1259-1271
    • Vaughn, M.L.1
  • 37
    • 0030651089 scopus 로고    scopus 로고
    • Beyond weights adaptation: a new neuron model with trainable activation function and its supervised learning
    • Wu Y, Zhao M, Ding X (1997) Beyond weights adaptation: a new neuron model with trainable activation function and its supervised learning. In: International conference on neural networks, pp 1152-1157.
    • (1997) International conference on neural networks , pp. 1152-1157
    • Wu, Y.1    Zhao, M.2    Ding, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.