-
2
-
-
10244235219
-
An activation function adapting training algorithm for sigmoidal feedforward networks
-
Chandra P, Singh Y (2004) An activation function adapting training algorithm for sigmoidal feedforward networks. Neurocomputing 61: 429-437.
-
(2004)
Neurocomputing
, vol.61
, pp. 429-437
-
-
Chandra, P.1
Singh, Y.2
-
3
-
-
0036555952
-
Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks
-
Daqia G, Genxinga Y (2003) Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks. Pattern Recognit 36: 869-878.
-
(2003)
Pattern Recognit
, vol.36
, pp. 869-878
-
-
Daqia, G.1
Genxinga, Y.2
-
4
-
-
22844434823
-
Classification methodologies of multilayer perceptrons with sigmoid activation functions
-
Daqi G, Yan J (2005) Classification methodologies of multilayer perceptrons with sigmoid activation functions. Pattern Recognit 38: 1469-1482.
-
(2005)
Pattern Recognit
, vol.38
, pp. 1469-1482
-
-
Daqi, G.1
Yan, J.2
-
5
-
-
0000221271
-
Products units: a computationally powerful and biologically plausible extension to backpropagation networks
-
Durbin R, Rumelhart D (1989) Products units: a computationally powerful and biologically plausible extension to backpropagation networks. Neural Comput 1: 133-142.
-
(1989)
Neural Comput
, vol.1
, pp. 133-142
-
-
Durbin, R.1
Rumelhart, D.2
-
6
-
-
0000400323
-
Survey of neural transfer functions
-
Duch W, Janhowski N (1999) Survey of neural transfer functions. Neural Comput 2: 163-212.
-
(1999)
Neural Comput
, vol.2
, pp. 163-212
-
-
Duch, W.1
Janhowski, N.2
-
7
-
-
52949151520
-
Novel neuronal activation functions for feedforward neural networks
-
Efe M (2008) Novel neuronal activation functions for feedforward neural networks. Neural Process Lett 8: 63-79.
-
(2008)
Neural Process Lett
, vol.8
, pp. 63-79
-
-
Efe, M.1
-
8
-
-
0032029357
-
Multilayer neural networks and Bayes decision theory
-
Funahashi K (1998) Multilayer neural networks and Bayes decision theory. Neural Netw 11: 209-213.
-
(1998)
Neural Netw
, vol.11
, pp. 209-213
-
-
Funahashi, K.1
-
9
-
-
33644541524
-
Call classification using recurrent neural networks, support vector machines and finite state automata
-
Garfield S, Wermter S (2006) Call classification using recurrent neural networks, support vector machines and finite state automata. Knowl Inf Syst 9: 131-156.
-
(2006)
Knowl Inf Syst
, vol.9
, pp. 131-156
-
-
Garfield, S.1
Wermter, S.2
-
10
-
-
0025507332
-
On the decision regions of multilayer perceptrons
-
Gibson GJ, Cowan CFN (1990) On the decision regions of multilayer perceptrons. In: Proceedings of IEEE 78(9): 1590-1594.
-
(1990)
Proceedings of IEEE
, vol.78
, Issue.9
, pp. 1590-1594
-
-
Gibson, G.J.1
Cowan, C.F.N.2
-
11
-
-
0032643084
-
Multilayer feedforward networks with adaptive spline activation function
-
Guarnieri S, Piazza F, Uncini A (1999) Multilayer feedforward networks with adaptive spline activation function. IEEE Trans Neural Netw 10: 672-684.
-
(1999)
IEEE Trans Neural Netw
, vol.10
, pp. 672-684
-
-
Guarnieri, S.1
Piazza, F.2
Uncini, A.3
-
12
-
-
71649107625
-
Combined projection and kernel basis functions for classification in evolutionary neural networks
-
Gutierrez PA, Hervas C, Carbonero M et al (2009) Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing 72: 2731-2742.
-
(2009)
Neurocomputing
, vol.72
, pp. 2731-2742
-
-
Gutierrez, P.A.1
Hervas, C.2
Carbonero, M.3
-
16
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Homik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4: 251-257.
-
(1991)
Neural Netw
, vol.4
, pp. 251-257
-
-
Homik, K.1
-
17
-
-
0027812765
-
Some new results on neural network approximation
-
Homik K (1993) Some new results on neural network approximation. Neural Netw 6: 1069-1072.
-
(1993)
Neural Netw
, vol.6
, pp. 1069-1072
-
-
Homik, K.1
-
18
-
-
0025792215
-
Bounds on the number of hidden neurons in multilayer perceptrons
-
Huang SC, Huang YF (1991) Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans Neural Netw 2: 47-55.
-
(1991)
IEEE Trans Neural Netw
, vol.2
, pp. 47-55
-
-
Huang, S.C.1
Huang, Y.F.2
-
19
-
-
0034187311
-
Classification ability of single hidden layer feedforward neural networks
-
Huang GB, Chen YQ, Babri HA (2000) Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw 11: 799-801.
-
(2000)
IEEE Trans Neural Netw
, vol.11
, pp. 799-801
-
-
Huang, G.B.1
Chen, Y.Q.2
Babri, H.A.3
-
21
-
-
0002748218
-
How neural nets work
-
D. Anderson (Ed.), New York: American Institute of Physics
-
Lapedes A, Farber R (1988) How neural nets work. In: Anderson D (eds) Neural information processing systems. American Institute of Physics, New York, pp 442-456.
-
(1988)
Neural Information Processing Systems
, pp. 442-456
-
-
Lapedes, A.1
Farber, R.2
-
22
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
Leshno M, Lin VY, Pinkus A et al (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6: 861-867.
-
(1993)
Neural Netw
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinkus, A.3
-
23
-
-
70350539300
-
Parameter determination and feature selection for back- propagation network by particle swarm optimization
-
Lin SW, Chen SC, Wu WJ et al (2009) Parameter determination and feature selection for back- propagation network by particle swarm optimization. Knowl Inf Syst 21: 249-266.
-
(2009)
Knowl Inf Syst
, vol.21
, pp. 249-266
-
-
Lin, S.W.1
Chen, S.C.2
Wu, W.J.3
-
24
-
-
40649091560
-
Two k-winners-take-all networks with discontinuous activation functions
-
Liu Q, Wang J (2008) Two k-winners-take-all networks with discontinuous activation functions. Neural Netw 21: 406-413.
-
(2008)
Neural Netw
, vol.21
, pp. 406-413
-
-
Liu, Q.1
Wang, J.2
-
25
-
-
0024771475
-
Pattern classification using neural networks
-
Lippmann RP (1989) Pattern classification using neural networks. IEEE Commun Mag 27: 47-64.
-
(1989)
IEEE Commun Mag
, vol.27
, pp. 47-64
-
-
Lippmann, R.P.1
-
26
-
-
0030198925
-
Characterization of a class of sigmoid functions with applications to neural networks
-
Menon A, Mehrotra K, Mohan CK et al (1996) Characterization of a class of sigmoid functions with applications to neural networks. Neural Netw 9: 819-835.
-
(1996)
Neural Netw
, vol.9
, pp. 819-835
-
-
Menon, A.1
Mehrotra, K.2
Mohan, C.K.3
-
27
-
-
0026868102
-
Functional-link net computing: theory, system architecture, and functionalities
-
Pao YH, Takefuji Y (1992) Functional-link net computing: theory, system architecture, and functionalities. IEEE Comput 25: 76-79.
-
(1992)
IEEE Comput
, vol.25
, pp. 76-79
-
-
Pao, Y.H.1
Takefuji, Y.2
-
28
-
-
67349199540
-
Multiresolution-based bilinear recurrent neural network
-
Park DC (2009) Multiresolution-based bilinear recurrent neural network. Knowl Inf Syst 19: 235-248.
-
(2009)
Knowl Inf Syst
, vol.19
, pp. 235-248
-
-
Park, D.C.1
-
29
-
-
0342843502
-
Artificial neural networks with adaptive polynomial activation function
-
Bejing
-
Piazza F, Uncini A, Zenobi M (1993) Artificial neural networks with adaptive polynomial activation function. In: Proceeding of the IJCNN, Bejing, pp 343-349.
-
(1993)
Proceeding of the IJCNN
, pp. 343-349
-
-
Piazza, F.1
Uncini, A.2
Zenobi, M.3
-
30
-
-
80052398296
-
Multi-resolution boosting for classification and regression problems
-
doi: 10. 1007/s10115-010-0358-0
-
Reddy CK, Park JH (2010) Multi-resolution boosting for classification and regression problems. Knowl Inf Syst. doi: 10. 1007/s10115-010-0358-0.
-
(2010)
Knowl Inf Syst
-
-
Reddy, C.K.1
Park, J.H.2
-
31
-
-
0026254768
-
A general regression neural network
-
Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2: 568-576.
-
(1991)
IEEE Trans Neural Netw
, vol.2
, pp. 568-576
-
-
Specht, D.F.1
-
32
-
-
0038648742
-
A class +1 sigmoidal activation functions for FANNs
-
Singh Y, Chandra P (2003) A class +1 sigmoidal activation functions for FANNs. J Econ Dyn Control 28: 183-187.
-
(2003)
J Econ Dyn Control
, vol.28
, pp. 183-187
-
-
Singh, Y.1
Chandra, P.2
-
33
-
-
0033353812
-
Neural networks with periodic and monotonic activation functions: A comparative study in classification problems
-
Sopena JM, Romero E, Alquezar R (1999) Neural networks with periodic and monotonic activation functions: a comparative study in classification problems. In: International conference on artificial neural networks, pp. 323-328.
-
(1999)
International Conference On Artificial Neural Networks
, pp. 323-328
-
-
Sopena, J.M.1
Romero, E.2
Alquezar, R.3
-
35
-
-
0032029155
-
Learning and approximation capabilities of adaptive spline activation function neural networks
-
Vecci L, Piazza F, Uncini A (1998) Learning and approximation capabilities of adaptive spline activation function neural networks. Neural Netw 1: 259-270.
-
(1998)
Neural Netw
, vol.1
, pp. 259-270
-
-
Vecci, L.1
Piazza, F.2
Uncini, A.3
-
36
-
-
0032853385
-
Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery
-
Vaughn ML (1999) Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery. Neural Netw 12: 1259-1271.
-
(1999)
Neural Netw
, vol.12
, pp. 1259-1271
-
-
Vaughn, M.L.1
-
37
-
-
0030651089
-
Beyond weights adaptation: a new neuron model with trainable activation function and its supervised learning
-
Wu Y, Zhao M, Ding X (1997) Beyond weights adaptation: a new neuron model with trainable activation function and its supervised learning. In: International conference on neural networks, pp 1152-1157.
-
(1997)
International conference on neural networks
, pp. 1152-1157
-
-
Wu, Y.1
Zhao, M.2
Ding, X.3
|