메뉴 건너뛰기




Volumn 30, Issue 2, 2012, Pages 230-246

Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing

Author keywords

Classification; Magnetic resonance imaging (MRI); Multispectral; Seeded region growing (SRG); Segmentation

Indexed keywords

ARTICLE; AUTOANALYSIS; COMPUTER ANALYSIS; COMPUTER ASSISTED RADIOGRAPHY; CONTROLLED STUDY; EXPERIMENTAL STUDY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; FUZZY KNOWLEDGE BASED SEEDED REGION GROWING; FUZZY SYSTEM; IMAGE PROCESSING; IMAGE QUALITY; INTERMETHOD COMPARISON; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; PHANTOM; PRIORITY JOURNAL; SUPPORT VECTOR MACHINE;

EID: 84855473998     PISSN: 0730725X     EISSN: 18735894     Source Type: Journal    
DOI: 10.1016/j.mri.2011.09.008     Document Type: Article
Times cited : (76)

References (31)
  • 1
    • 85032750830 scopus 로고    scopus 로고
    • Magnetic resonance imaging
    • Wright G.A. Magnetic resonance imaging. IEEE Signal Process Mag 1997, 14:56-66.
    • (1997) IEEE Signal Process Mag , vol.14 , pp. 56-66
    • Wright, G.A.1
  • 2
    • 0026260151 scopus 로고
    • Mathematical principles of basic magnetic-resonance-imaging in medicine
    • Sebastiani G., Barone P. Mathematical principles of basic magnetic-resonance-imaging in medicine. Signal Process 1991, 25:227-250.
    • (1991) Signal Process , vol.25 , pp. 227-250
    • Sebastiani, G.1    Barone, P.2
  • 3
    • 0036648641 scopus 로고    scopus 로고
    • Unsupervised orthogonal subspace projection approach to magnetic resonance image classification
    • Wang C.M., Chen C.C.C., Yang S.C., Chung P.C., Chung Y.N., Yang C.W., Chang C.I. Unsupervised orthogonal subspace projection approach to magnetic resonance image classification. Opt Eng 2002, 41:1546-1557.
    • (2002) Opt Eng , vol.41 , pp. 1546-1557
    • Wang, C.M.1    Chen, C.C.C.2    Yang, S.C.3    Chung, P.C.4    Chung, Y.N.5    Yang, C.W.6    Chang, C.I.7
  • 6
    • 21644444336 scopus 로고    scopus 로고
    • An unsupervised Kalman filter-based linear mixing approach to MRI classification, 2004 IEEE Asia-Pacific Conference on Circuits and Systems
    • Wang C.M., Lin G.C., Lin C.Y., Chen R.M. An unsupervised Kalman filter-based linear mixing approach to MRI classification, 2004 IEEE Asia-Pacific Conference on Circuits and Systems. Tainan (Taiwan ROC) 2004, 1105-1108.
    • (2004) Tainan (Taiwan ROC) , pp. 1105-1108
    • Wang, C.M.1    Lin, G.C.2    Lin, C.Y.3    Chen, R.M.4
  • 7
    • 0031283432 scopus 로고    scopus 로고
    • Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
    • Reddick W.E., Glass J.O., Cook E.N., Elkin T.D., Deaton R.J. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 1997, 16:911-918.
    • (1997) IEEE Trans Med Imaging , vol.16 , pp. 911-918
    • Reddick, W.E.1    Glass, J.O.2    Cook, E.N.3    Elkin, T.D.4    Deaton, R.J.5
  • 8
    • 0032137958 scopus 로고    scopus 로고
    • Automatic segmentation of cerebral MR images using artificial neural networks
    • Alirezaie J., Jernigan M.E., Nahmias C. Automatic segmentation of cerebral MR images using artificial neural networks. IEEE Trans Nucl Sci 1998, 45:2174-2182.
    • (1998) IEEE Trans Nucl Sci , vol.45 , pp. 2174-2182
    • Alirezaie, J.1    Jernigan, M.E.2    Nahmias, C.3
  • 10
    • 0030219668 scopus 로고    scopus 로고
    • Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network
    • Lin J.S., Cheng K.S., Mao C.W. Multispectral magnetic resonance images segmentation using fuzzy Hopfield neural network. Int J Biomed Comput 1996, 42:205-214.
    • (1996) Int J Biomed Comput , vol.42 , pp. 205-214
    • Lin, J.S.1    Cheng, K.S.2    Mao, C.W.3
  • 11
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    • Ahmed M.N., Yamany S.M., Mohamed N., Farag A.A., Moriarty T. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 2002, 21:193-199.
    • (2002) IEEE Trans Med Imaging , vol.21 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.M.2    Mohamed, N.3    Farag, A.A.4    Moriarty, T.5
  • 12
    • 0033233279 scopus 로고    scopus 로고
    • Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means
    • Chuang K.H., Chiu M.J., Lin C.C., Chen J.H. Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means. IEEE Trans Med Imaging 1999, 18:1117-1128.
    • (1999) IEEE Trans Med Imaging , vol.18 , pp. 1117-1128
    • Chuang, K.H.1    Chiu, M.J.2    Lin, C.C.3    Chen, J.H.4
  • 17
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang Y.Y., Brady M., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001, 20:45-57.
    • (2001) IEEE Trans Med Imaging , vol.20 , pp. 45-57
    • Zhang, Y.Y.1    Brady, M.2    Smith, S.3
  • 19
    • 49249132483 scopus 로고    scopus 로고
    • Volume and shape in feature space on adaptive FCM in MRI segmentation
    • He R.J., Sajja B.R., Datta S., Narayana P.A. Volume and shape in feature space on adaptive FCM in MRI segmentation. Ann Biomed Eng 2008, 36:1580-1593.
    • (2008) Ann Biomed Eng , vol.36 , pp. 1580-1593
    • He, R.J.1    Sajja, B.R.2    Datta, S.3    Narayana, P.A.4
  • 20
    • 54449096064 scopus 로고    scopus 로고
    • Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains
    • Bricq S., Collet C., Armspach J.P. Unifying framework for multimodal brain MRI segmentation based on hidden Markov chains. Med Image Anal 2008, 12:639-652.
    • (2008) Med Image Anal , vol.12 , pp. 639-652
    • Bricq, S.1    Collet, C.2    Armspach, J.P.3
  • 22
    • 0035474775 scopus 로고    scopus 로고
    • Automatic image segmentation by integrating color-edge extraction and seeded region growing
    • Fan J.P., Yau D.K.Y., Elmagarmid A.K., Aref W.G. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans Image Process 2001, 10:1454-1466.
    • (2001) IEEE Trans Image Process , vol.10 , pp. 1454-1466
    • Fan, J.P.1    Yau, D.K.Y.2    Elmagarmid, A.K.3    Aref, W.G.4
  • 23
    • 17644395280 scopus 로고    scopus 로고
    • Seeded region growing: an extensive and comparative study
    • Fan H.P., Zeng G.H., Body M., Hacid M.S. Seeded region growing: an extensive and comparative study. Pattern Recognit Lett 2005, 26:1139-1156.
    • (2005) Pattern Recognit Lett , vol.26 , pp. 1139-1156
    • Fan, H.P.1    Zeng, G.H.2    Body, M.3    Hacid, M.S.4
  • 24
    • 23844459230 scopus 로고    scopus 로고
    • Automatic seeded region growing for color image segmentation
    • Shih F.Y., Cheng S.X. Automatic seeded region growing for color image segmentation. Image Vis Comput 2005, 23:877-886.
    • (2005) Image Vis Comput , vol.23 , pp. 877-886
    • Shih, F.Y.1    Cheng, S.X.2
  • 25
    • 0035423154 scopus 로고    scopus 로고
    • Unsupervised segmentation of color-texture regions in images and video
    • Deng Y.N., Manjunath B.S. Unsupervised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell 2001, 23:800-810.
    • (2001) IEEE Trans Pattern Anal Mach Intell , vol.23 , pp. 800-810
    • Deng, Y.N.1    Manjunath, B.S.2
  • 26
    • 33750324096 scopus 로고    scopus 로고
    • A novel edge detection method based on the maximizing objective function
    • Kang C.C., Wang W.J. A novel edge detection method based on the maximizing objective function. Pattern Recognit 2007, 40:609-618.
    • (2007) Pattern Recognit , vol.40 , pp. 609-618
    • Kang, C.C.1    Wang, W.J.2
  • 27
    • 84855479068 scopus 로고    scopus 로고
    • FMRIB's automated segmentation tool
    • FMRIB's automated segmentation tool - http://www.fmrib.ox.ac.uk/analysis/research/fast/.
  • 28
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., Vapnik V. Support vector networks. Mach Learn 1995, 20:273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 29
    • 77952289229 scopus 로고    scopus 로고
    • Automated classification of multi-spectral MR images using linear discriminant analysis
    • Lin G.C., Wang W.J., Wang C.M., Sun S.Y. Automated classification of multi-spectral MR images using linear discriminant analysis. Comput Med Imag Grap 2010, 34:251-268.
    • (2010) Comput Med Imag Grap , vol.34 , pp. 251-268
    • Lin, G.C.1    Wang, W.J.2    Wang, C.M.3    Sun, S.Y.4
  • 30
    • 0032077905 scopus 로고    scopus 로고
    • Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology
    • van Erkel A.R., Pattynama P.M.T. Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology. Eur J Radiol 1998, 27:88-94.
    • (1998) Eur J Radiol , vol.27 , pp. 88-94
    • van Erkel, A.R.1    Pattynama, P.M.T.2
  • 31
    • 0026197323 scopus 로고
    • Automatic segmentation of head MR images by knowledge guided thresholding
    • Suzuki H., Toriwaki J. Automatic segmentation of head MR images by knowledge guided thresholding. Comput Med Imag Grap 1991, 15:233-240.
    • (1991) Comput Med Imag Grap , vol.15 , pp. 233-240
    • Suzuki, H.1    Toriwaki, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.