메뉴 건너뛰기




Volumn 35, Issue , 2012, Pages 107-113

Modelling of dam behaviour based on neuro-fuzzy identification

Author keywords

ANFIS; Arch dam; Dam behaviour; Identification; Radial displacement

Indexed keywords

ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM; ANFIS; BEHAVIOUR MODELLING; COMPLEX TASK; ENGINEERING STRUCTURES; EXPERIMENTAL DATA; IDENTIFICATION MODEL; NEURO-FUZZY; NON-PARAMETRIC MODEL; NONLINEAR FUNCTIONS; RADIAL DISPLACEMENTS; SOFT COMPUTING MODELS; STRUCTURAL BEHAVIOUR; TIME VARYING;

EID: 84855453194     PISSN: 01410296     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engstruct.2011.11.011     Document Type: Article
Times cited : (56)

References (32)
  • 1
    • 84856569461 scopus 로고    scopus 로고
    • Methods of analysis for the prediction and the verification of dam behaviour
    • ICOLD
    • ICOLD. Methods of analysis for the prediction and the verification of dam behaviour. Tech. Rep. Swiss Committee on Dams; 2003.
    • (2003) Tech. Rep. Swiss Committee on Dams;
  • 3
    • 19544372922 scopus 로고    scopus 로고
    • Use of deformation monitoring results in solving geomechanical problems - case studies
    • Szostak-Chrzanowski A., Chrzanowski A., Massiéra M. Use of deformation monitoring results in solving geomechanical problems - case studies. Eng Geol 2005, 79(1-2):3-12.
    • (2005) Eng Geol , vol.79 , Issue.1-2 , pp. 3-12
    • Szostak-Chrzanowski, A.1    Chrzanowski, A.2    Massiéra, M.3
  • 4
    • 79251649947 scopus 로고    scopus 로고
    • Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models
    • Mata J. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Eng Struct 2011, 33(3):903-910.
    • (2011) Eng Struct , vol.33 , Issue.3 , pp. 903-910
    • Mata, J.1
  • 5
    • 33750630303 scopus 로고    scopus 로고
    • Statistical analysis and structural identification in concrete dam monitoring
    • De Sortis A., Paoliani P. Statistical analysis and structural identification in concrete dam monitoring. Eng Struct 2007, 29(1):110-120.
    • (2007) Eng Struct , vol.29 , Issue.1 , pp. 110-120
    • De Sortis, A.1    Paoliani, P.2
  • 6
    • 33644848513 scopus 로고    scopus 로고
    • Identification of elastic stiffness and local stresses in concrete dams by in situ tests and neural networks
    • Fedele R., Maier G., Miller B. Identification of elastic stiffness and local stresses in concrete dams by in situ tests and neural networks. Struct Infrastruct Eng 2005, 1(3):165-180.
    • (2005) Struct Infrastruct Eng , vol.1 , Issue.3 , pp. 165-180
    • Fedele, R.1    Maier, G.2    Miller, B.3
  • 7
    • 33644838948 scopus 로고    scopus 로고
    • Diagnostic inverse analysis of concrete dams with statical excitation
    • Ardito R., Bartalotta P., Ceriani L., Maier G. Diagnostic inverse analysis of concrete dams with statical excitation. J Mech Behav Mater 2004, 15(6):381-389.
    • (2004) J Mech Behav Mater , vol.15 , Issue.6 , pp. 381-389
    • Ardito, R.1    Bartalotta, P.2    Ceriani, L.3    Maier, G.4
  • 8
    • 70350164867 scopus 로고    scopus 로고
    • Improved hybrid wavelet neural network methodology for time-varying behavior prediction of engineering structures
    • Cao M., Qiao P., Ren Q. Improved hybrid wavelet neural network methodology for time-varying behavior prediction of engineering structures. Neural Comput Appl 2009, 18(7):821-832.
    • (2009) Neural Comput Appl , vol.18 , Issue.7 , pp. 821-832
    • Cao, M.1    Qiao, P.2    Ren, Q.3
  • 9
    • 34147150220 scopus 로고    scopus 로고
    • Modeling the relationship between water level and vertical displacements on the Yamula Dam, Turkey
    • Bayrak T. Modeling the relationship between water level and vertical displacements on the Yamula Dam, Turkey. Nat Hazards Earth Syst Sci 2007, 7(2):289-297.
    • (2007) Nat Hazards Earth Syst Sci , vol.7 , Issue.2 , pp. 289-297
    • Bayrak, T.1
  • 10
    • 77957315843 scopus 로고    scopus 로고
    • System identification of concrete gravity dams using artificial neural networks based on a hybrid finite element-boundary element approach
    • Karimi I., Khaji N., Ahmadi M.T., Mirzayee M. System identification of concrete gravity dams using artificial neural networks based on a hybrid finite element-boundary element approach. Eng Struct 2010, 32(11):3583-3591.
    • (2010) Eng Struct , vol.32 , Issue.11 , pp. 3583-3591
    • Karimi, I.1    Khaji, N.2    Ahmadi, M.T.3    Mirzayee, M.4
  • 11
    • 80051588553 scopus 로고    scopus 로고
    • The use of SISO ARX models in the determination of the damage to dams
    • Gülal E., Erdoĝan H., Aykut N.O., Erkaya H. The use of SISO ARX models in the determination of the damage to dams. Int J Dam Mech 2010, 10.1177/1056789510369333.
    • (2010) Int J Dam Mech
    • Gülal, E.1    Erdoĝan, H.2    Aykut, N.O.3    Erkaya, H.4
  • 12
    • 19944373096 scopus 로고    scopus 로고
    • Structural identification from field measurement data using a neural network
    • Chen C.H. Structural identification from field measurement data using a neural network. Smart Mater Struct 2005, 14(3):S104-S115.
    • (2005) Smart Mater Struct , vol.14 , Issue.3
    • Chen, C.H.1
  • 13
    • 0033132728 scopus 로고    scopus 로고
    • An improved approach for nonlinear system identification using neural networks
    • Gupta P., Sinha N.K. An improved approach for nonlinear system identification using neural networks. J Franklin Inst 1999, 336(4):721-734.
    • (1999) J Franklin Inst , vol.336 , Issue.4 , pp. 721-734
    • Gupta, P.1    Sinha, N.K.2
  • 14
    • 0036707312 scopus 로고    scopus 로고
    • Adaptive time delay neural network structures for nonlinear system identification
    • Yazdizadeh A., Khorasani K. Adaptive time delay neural network structures for nonlinear system identification. Neurocomputing 2002, 47(1-4):207-240.
    • (2002) Neurocomputing , vol.47 , Issue.1-4 , pp. 207-240
    • Yazdizadeh, A.1    Khorasani, K.2
  • 15
    • 0035273045 scopus 로고    scopus 로고
    • Some new results on system identification with dynamic neural networks
    • Yu W., Li X. Some new results on system identification with dynamic neural networks. IEEE Trans Neural Netw 2001, 12(2):412-417.
    • (2001) IEEE Trans Neural Netw , vol.12 , Issue.2 , pp. 412-417
    • Yu, W.1    Li, X.2
  • 16
    • 11244305511 scopus 로고    scopus 로고
    • NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches
    • Gao Y., Er M.J. NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets Syst 2005, 150(2):331-350.
    • (2005) Fuzzy Sets Syst , vol.150 , Issue.2 , pp. 331-350
    • Gao, Y.1    Er, M.J.2
  • 17
    • 0242523780 scopus 로고    scopus 로고
    • Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms
    • Yu W. Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms. Inform Sci 2004, 158:131-147.
    • (2004) Inform Sci , vol.158 , pp. 131-147
    • Yu, W.1
  • 18
    • 26844525525 scopus 로고    scopus 로고
    • Identification of nonlinear systems by Takagi-Sugeno fuzzy logic gray box modeling for real-time control
    • Abdelazim T., Malik O.P. Identification of nonlinear systems by Takagi-Sugeno fuzzy logic gray box modeling for real-time control. Control Eng Pract 2005, 13(12):1489-1498.
    • (2005) Control Eng Pract , vol.13 , Issue.12 , pp. 1489-1498
    • Abdelazim, T.1    Malik, O.P.2
  • 19
    • 79960004108 scopus 로고    scopus 로고
    • Parameter identification of TSK neuro-fuzzy models
    • Banakar A., Fazle Azeem M. Parameter identification of TSK neuro-fuzzy models. Fuzzy Sets Syst 2011, 10.1016/j.fss.2011.05.003.
    • (2011) Fuzzy Sets Syst
    • Banakar, A.1    Fazle Azeem, M.2
  • 20
    • 0141501530 scopus 로고    scopus 로고
    • Neuro-fuzzy methods for nonlinear system identification
    • Babuška R., Verbruggen H. Neuro-fuzzy methods for nonlinear system identification. Ann Rev Control 2003, 27(1):73-85.
    • (2003) Ann Rev Control , vol.27 , Issue.1 , pp. 73-85
    • Babuška, R.1    Verbruggen, H.2
  • 21
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 1993, 23(3):665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 23
    • 75449106574 scopus 로고    scopus 로고
    • Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization
    • Hamidian D., Seyedpoor S.M. Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization. Appl Math Model 2010, 34(6):1574-1585.
    • (2010) Appl Math Model , vol.34 , Issue.6 , pp. 1574-1585
    • Hamidian, D.1    Seyedpoor, S.M.2
  • 24
    • 70249112288 scopus 로고    scopus 로고
    • Optimum shape design of arch dams for earthquake loading using a fuzzy inference system and wavelet neural networks
    • Seyedpoor S.M., Salajegheh J., Salajegheh E., Golizadeh S. Optimum shape design of arch dams for earthquake loading using a fuzzy inference system and wavelet neural networks. Eng Optimiz 2009, 41(5):473-493.
    • (2009) Eng Optimiz , vol.41 , Issue.5 , pp. 473-493
    • Seyedpoor, S.M.1    Salajegheh, J.2    Salajegheh, E.3    Golizadeh, S.4
  • 25
    • 84856559763 scopus 로고    scopus 로고
    • Deformation analysis of an arch dam using ANFIS. In: Reiterer A, Egly U, Heinert M, Riedel B, editors. Proceedings of the second international workshop on application of artificial intelligence and innovations in engineering geodesy. Braunschweig, Germany;
    • Demirkaya S. Deformation analysis of an arch dam using ANFIS. In: Reiterer A, Egly U, Heinert M, Riedel B, editors. Proceedings of the second international workshop on application of artificial intelligence and innovations in engineering geodesy. Braunschweig, Germany; 2010. p. 21-31.
    • (2010) , pp. 21-31
    • Demirkaya, S.1
  • 26
    • 0029483769 scopus 로고
    • Nonlinear black-box modeling in system identification: a unified overview
    • Sjöberg J., Zhang Q., Ljung L., Benveniste A., Deylon B., Glorennec P., et al. Nonlinear black-box modeling in system identification: a unified overview. Automatica 1995, 31(12):1691-1724.
    • (1995) Automatica , vol.31 , Issue.12 , pp. 1691-1724
    • Sjöberg, J.1    Zhang, Q.2    Ljung, L.3    Benveniste, A.4    Deylon, B.5    Glorennec, P.6
  • 27
    • 0028436491 scopus 로고
    • Approximation theory for fuzzy systems - SISO case
    • Zeng X.J., Singh M.G. Approximation theory for fuzzy systems - SISO case. IEEE Trans Fuzzy Syst 1994, 20(2):162-176.
    • (1994) IEEE Trans Fuzzy Syst , vol.20 , Issue.2 , pp. 162-176
    • Zeng, X.J.1    Singh, M.G.2
  • 28
    • 0028532753 scopus 로고
    • Fuzzy systems as universal approximator
    • Kosko B. Fuzzy systems as universal approximator. IEEE Trans Comput 1994, 43(11):1329-1333.
    • (1994) IEEE Trans Comput , vol.43 , Issue.11 , pp. 1329-1333
    • Kosko, B.1
  • 29
    • 0036888603 scopus 로고    scopus 로고
    • Structure identification and parameter optimization for non-linear fuzzy modelling
    • Evsukoff A., Branco A.C.S., Galichet S. Structure identification and parameter optimization for non-linear fuzzy modelling. Fuzzy Sets Syst 2002, 132(2):173-188.
    • (2002) Fuzzy Sets Syst , vol.132 , Issue.2 , pp. 173-188
    • Evsukoff, A.1    Branco, A.C.S.2    Galichet, S.3
  • 30
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 1985, 15(1):116-132.
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 31
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • Sugeno M., Kang G.T. Structure identification of fuzzy model. Fuzzy Sets Syst 1988, 28(1):15-33.
    • (1988) Fuzzy Sets Syst , vol.28 , Issue.1 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 32
    • 84876958285 scopus 로고    scopus 로고
    • Dynamic programming approach to missing data estimation using neural networks
    • Nelwamondo FV., Golding D., Marwala T.A. dynamic programming approach to missing data estimation using neural networks. Inform Sci 2009, 10.1016/j.ins.2009.10.008.
    • (2009) Inform Sci
    • Nelwamondo, F.V.1    Golding, D.2    Marwala, T.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.