메뉴 건너뛰기




Volumn 59, Issue 1, 2012, Pages 58-67

A sparse and spatially constrained generative regression model for fMRI data analysis

Author keywords

Expectation maximization (EM) algorithm; functional magnetic resonance imaging (fMRI) analysis; general linear regression model (GLM); Markov random field (MRF); relevance vector machine (RVM)

Indexed keywords

EXPECTATION-MAXIMIZATION ALGORITHMS; FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) ANALYSIS; GENERAL LINEAR REGRESSION MODEL (GLM); MARKOV RANDOM FIELD; RELEVANCE VECTOR MACHINE;

EID: 84555197073     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2010.2104321     Document Type: Article
Times cited : (33)

References (39)
  • 3
    • 0028998867 scopus 로고
    • Analysis of fMRI time series revisited
    • K. J. Friston, "Analysis of fMRI time series revisited," NeuroImage, vol. 2, pp. 45-53, 1995.
    • (1995) NeuroImage , vol.2 , pp. 45-53
    • Friston, K.J.1
  • 5
    • 44149098492 scopus 로고    scopus 로고
    • Diffusion-based spatial priors for functional magnetic resonance images
    • L. Harrison, W. Penny, J. Daunizeau, and K. Friston, "Diffusion- based spatial priors for functional magnetic resonance images," NeuroImage, vol. 41, no. 2, pp. 408-423, 2008.
    • (2008) NeuroImage , vol.41 , Issue.2 , pp. 408-423
    • Harrison, L.1    Penny, W.2    Daunizeau, J.3    Friston, K.4
  • 6
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysis with spatial priors
    • DOI 10.1016/j.neuroimage.2004.08.034, PII S1053811904004975
    • W.D. Penny, N.J. Trujillo-Barreto, and K.J. Friston, "Bayesian fMRI time series analysis with spatial priors," NeuroImage, vol. 24, pp. 350-362, Jan. 2005. (Pubitemid 41359032)
    • (2005) NeuroImage , vol.24 , Issue.2 , pp. 350-362
    • Penny, W.D.1    Trujillo-Barreto, N.J.2    Friston, K.J.3
  • 7
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 8
    • 33947179549 scopus 로고    scopus 로고
    • Bayesian fMRI data analysis with sparse spatial basis function priors
    • DOI 10.1016/j.neuroimage.2006.10.005, PII S1053811906010172
    • G. Flandin and W. Penny, "Bayesian fMRI data analysis with sparse spatial basis function priors," NeuroImage, vol. 34, pp. 1108-1125, 2007. (Pubitemid 46394473)
    • (2007) NeuroImage , vol.34 , Issue.3 , pp. 1108-1125
    • Flandin, G.1    Penny, W.D.2
  • 9
    • 0032211488 scopus 로고    scopus 로고
    • FMRI signal restoration using a spatio-temporal Markov random field preserving transitions
    • DOI 10.1006/nimg.1998.0372
    • X. Descombes, F. Kruggel, and von D.Y. Cramon, "fMRI signal restoration using a spatio-temporal Markov random field preserving transitions," NeuroImage, vol. 8, pp. 340-349, 1998. (Pubitemid 28545933)
    • (1998) NeuroImage , vol.8 , Issue.4 , pp. 340-349
    • Descombes, X.1    Kruggel, F.2    Von Cramon, D.Y.3
  • 10
    • 0033647016 scopus 로고    scopus 로고
    • Spatial mixture modeling of fMRI data
    • N. Hartvig and J. Jensen, "Spatial mixture modeling of fMRI data," Human Brain Mapp., vol. 11, no. 4, pp. 233-248, 2000.
    • (2000) Human Brain Mapp. , vol.11 , Issue.4 , pp. 233-248
    • Hartvig, N.1    Jensen, J.2
  • 11
    • 0042170182 scopus 로고    scopus 로고
    • Adaptive analysis for fMRI data
    • O. Friman, M. Borga, P. Lundberg, and H. Knutsson, "Adaptive analysis for fMRI data," Neuroimage, vol. 19, no. 3, pp. 837-845, 2003.
    • (2003) Neuroimage , vol.19 , Issue.3 , pp. 837-845
    • Friman, O.1    Borga, M.2    Lundberg, P.3    Knutsson, H.4
  • 13
    • 35948939625 scopus 로고    scopus 로고
    • Estimating the number of independent components for functional magnetic resonance imaging data
    • DOI 10.1002/hbm.20359
    • Y. Li, T. Adali, and V. Calhoun, "Estimating the number of independent components for functional magnetic resonance imaging data," Human Brain Mapp., vol. 28, no. 11, pp. 1251-1266, 2007. (Pubitemid 350077488)
    • (2007) Human Brain Mapping , vol.28 , Issue.11 , pp. 1251-1266
    • Li, Y.-O.1    Adali, T.2    Calhoun, V.D.3
  • 14
    • 0035013277 scopus 로고    scopus 로고
    • Bayesian spatiotemporal inference in functional magnetic resonance imaging
    • C. Gossl, D. P. Auer, and L. Fahrmeir, "Bayesian spatiotemporal inference in functional magnetic resonance imaging," Biometrics, vol. 57, pp. 554-562, 2001. (Pubitemid 32488616)
    • (2001) Biometrics , vol.57 , Issue.2 , pp. 554-562
    • Gossl, C.1    Auer, D.P.2    Fahrmeir, L.3
  • 15
    • 1342303479 scopus 로고    scopus 로고
    • Fully Bayesian spatio-temporal modelingoffMRI data
    • Feb.
    • M. Woolrich, M. Jenkinson, J. Brady, and S. Smith, "Fully Bayesian spatio-temporal modelingoffMRI data," IEEE Trans. Med. Imag., vol. 23, no. 2, pp. 213-231, Feb. 2004.
    • (2004) IEEE Trans. Med. Imag. , vol.23 , Issue.2 , pp. 213-231
    • Woolrich, M.1    Jenkinson, M.2    Brady, J.3    Smith, S.4
  • 16
    • 34249029761 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection with application to functional magnetic resonance imaging
    • M. Smith and L. Fahrmeir, "Spatial Bayesian variable selection with application to functional magnetic resonance imaging," J. Amer. Statist. Assoc., vol. 102, no. 478, pp. 417-431, 2007.
    • (2007) J. Amer. Statist. Assoc. , vol.102 , Issue.478 , pp. 417-431
    • Smith, M.1    Fahrmeir, L.2
  • 17
    • 75249099795 scopus 로고    scopus 로고
    • Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior
    • M. van Gerven, B. Cseke, F. P. de Lange, and T. Heskes, "Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior," Neuroimage, vol. 50, pp. 150-161, 2010.
    • (2010) Neuroimage , vol.50 , pp. 150-161
    • Van Gerven, M.1    Cseke, B.2    De Lange, F.P.3    Heskes, T.4
  • 18
    • 84855790671 scopus 로고    scopus 로고
    • FMRI detection via variational em approach
    • Available
    • W. Ou, "fMRI detection via variational EM approach," MIT OpenCourse-WareTech. Rep., 2005. Available: http://ocw.mit.edu/courses/ electrical-engineering-and-computer-science/6-881-representation-and-modeling- for-image-analysis-spring-2005/projects/
    • (2005) MIT OpenCourse-WareTech. Rep.
    • Ou, W.1
  • 19
    • 33645573671 scopus 로고    scopus 로고
    • Robust Spatial Smoothing in functional MRI
    • M. Schwaiger and O. Opitz, Eds. New York: Springer-Verlag
    • L. Fahrmeir, C. Gossl, and A. Hennerfeind, "Robust Spatial Smoothing in functional MRI," in Exploratory Data Analysis in Empirical Research, M. Schwaiger and O. Opitz, Eds. New York: Springer-Verlag, 2002, pp. 50-57.
    • (2002) Exploratory Data Analysis in Empirical Research , pp. 50-57
    • Fahrmeir, L.1    Gossl, C.2    Hennerfeind, A.3
  • 20
    • 26444586165 scopus 로고    scopus 로고
    • From spatial regularization to anatomical priors in fMRI analysis
    • Information Processing in Medical Imaging: 19th International Conference, IPMI 2005. Proceedings
    • W. Ou and P. Golland, "From spatial regularization to anatomical priors in fMRI analysis," in Proc. Inf. Process. Med. Imag., 2005, pp. 88-100. (Pubitemid 41425307)
    • (2005) Lecture Notes in Computer Science , vol.3565 , pp. 88-100
    • Ou, W.1    Golland, P.2
  • 21
    • 77951638840 scopus 로고    scopus 로고
    • Combining spatial priors and anatomical information for fMRI detection
    • W. Ou, W. M. Wells, and P. Golland, "Combining spatial priors and anatomical information for fMRI detection," Med. Image Anal., vol. 14, no. 3, pp. 318-331, 2010.
    • (2010) Med. Image Anal. , vol.14 , Issue.3 , pp. 318-331
    • Ou, W.1    Wells, W.M.2    Golland, P.3
  • 22
    • 29344433832 scopus 로고    scopus 로고
    • A sparse Bayesian method for determination of flexible design matrix for fMRI data analysis
    • DOI 10.1109/TCSI.2005.857083, Biomedical Circuits and Systems: A New Wave of Technology
    • H. Luo and S. Puthusserypady, "A sparse Bayesian method for determination of flexible design matrix for fMRI data analysis," IEEE Trans. Circuits Syst. I: Regular Papers, vol. 52, no. 12, pp. 2699-2706, Dec. 2005. (Pubitemid 43000825)
    • (2005) IEEE Transactions on Circuits and Systems I: Regular Papers , vol.52 , Issue.12 , pp. 2699-2706
    • Luo, H.1    Puthusserypady, S.2
  • 23
    • 34548119576 scopus 로고    scopus 로고
    • FMRI data analysis with nonstationary noise models: A Bayesian approach
    • DOI 10.1109/TBME.2007.902591
    • H. Luo and S. Puthusserypady, "fMRI data analysis with nonstationary noise models: A Bayesian approach," IEEE Trans. Biomed. Eng., vol. 54, no. 9, pp. 1621-1630, Sep. 2007. (Pubitemid 47301030)
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.9 , pp. 1621-1630
    • Luo, H.1    Puthusserypady, S.2
  • 24
    • 42249101233 scopus 로고    scopus 로고
    • Analysis of fMRI data with drift: Modified general linear model and Bayesian estimator
    • DOI 10.1109/TBME.2008.918563
    • H. Luo and S. Puthusserypady, "AnalysisoffMRI data with drift: Modified general linear model and Bayesian estimator," IEEE Trans. Biomed. Eng., vol. 55, no. 5, pp. 1504-1511, May 2008. (Pubitemid 351550733)
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , Issue.5 , pp. 1504-1511
    • Luo, H.1    Puthusserypady, S.2
  • 26
    • 55149117963 scopus 로고    scopus 로고
    • Prediction and interpretation of distributed neural activity with sparse models
    • M. Carroll, G. Cecchi, I. Rish, R. Garg, and A. R. Rao, "Prediction and interpretation of distributed neural activity with sparse models," Neu-roImage, vol. 44, pp. 112-122, 2009.
    • (2009) Neu-roImage , vol.44 , pp. 112-122
    • Carroll, M.1    Cecchi, G.2    Rish, I.3    Garg, R.4    Rao, A.R.5
  • 27
    • 74049144462 scopus 로고    scopus 로고
    • Voxel selection in fMRI data analysis based on sparse representation
    • Oct.
    • Y. Li, P. Namburi, Z. Yu, C. Guan, J. Feng, and Z. Gu, "Voxel selection in fMRI data analysis based on sparse representation," IEEE Trans. Biomed. Eng., vol. 56, no. 10, pp. 2439-2451, Oct. 2009.
    • (2009) IEEE Trans. Biomed. Eng. , vol.56 , Issue.10 , pp. 2439-2451
    • Li, Y.1    Namburi, P.2    Yu, Z.3    Guan, C.4    Feng, J.5    Gu, Z.6
  • 28
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. Dempster, A. Laird, and D. Rubin, "Maximum likelihood from incomplete data via the em algorithm," J. R. Statist. Soc., Series B, vol. 39, pp. 1-38, 1977.
    • (1977) J. R. Statist. Soc., Series B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, A.2    Rubin, D.3
  • 29
    • 0042671302 scopus 로고    scopus 로고
    • Variational Bayesian inference for fMRI time series
    • DOI 10.1016/S1053-8119(03)00071-5
    • W. Penny, S. Kiebel, and K. Friston, "Variational Bayesian inference for fMRI time series," NeuroImage, vol. 19, pp. 727-741, Jul. 2003. (Pubitemid 36918216)
    • (2003) NeuroImage , vol.19 , Issue.3 , pp. 727-741
    • Penny, W.1    Kiebel, S.2    Friston, K.3
  • 30
    • 0029341230 scopus 로고
    • Nonlinear image recovery with half-quadratic regularization
    • Jul.
    • D. Geman and C. Yang, "Nonlinear image recovery with half-quadratic regularization," IEEE Trans. Image Process., vol. 4, no. 7, pp. 932-946, Jul. 1995.
    • (1995) IEEE Trans. Image Process. , vol.4 , Issue.7 , pp. 932-946
    • Geman, D.1    Yang, C.2
  • 31
    • 0042671121 scopus 로고    scopus 로고
    • Posterior probability maps and SPMs
    • DOI 10.1016/S1053-8119(03)00144-7
    • K. J. Friston and W. Penny, "Posterior probability maps and SPMs," NeuroImage, vol. 19, pp. 1240-1249, Jul. 2003. (Pubitemid 36918260)
    • (2003) NeuroImage , vol.19 , Issue.3 , pp. 1240-1249
    • Friston, K.J.1    Penny, W.2
  • 33
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • DOI 10.1109/42.906424, PII S027800620100800X
    • Y. Zhang, M. Brady, and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm," IEEE Trans. Med. Imag., vol. 20, no. 1, pp. 45-57, Jan. 2001. (Pubitemid 32293419)
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 35
    • 3242798271 scopus 로고    scopus 로고
    • Functional magnetic renosance imaging for neurosurgical planning neurooncology
    • E. Vlieger, C. Majoie, S. Leenstra2, and G. den Heeten, "Functional magnetic resonance imaging for neurosurgical planning in neurooncology," Eur. Radiol., vol. 17, no. 7, pp. 1143-1153, 2004. (Pubitemid 38979206)
    • (2004) European Radiology , vol.14 , Issue.7 , pp. 1143-1153
    • Vlieger, E.-J.1    Majoie, C.B.2    Leenstra, S.3    Den Heeten, G.J.4
  • 36
    • 0036143741 scopus 로고    scopus 로고
    • Face repetition effects in implicit and explicit memory tests as measured by fMRI
    • R. Henson, T. Shallice, M. Gorno-Tempini, and R. Dolan, "Face repetition effects in implicit and explicit memory tests as measured by fMRI," Cereb. Cortex, vol. 12, no. 2, pp. 178-186, 2002. (Pubitemid 34052973)
    • (2002) Cerebral Cortex , vol.12 , Issue.2 , pp. 178-186
    • Henson, R.N.A.1    Shallice, T.2    Gorno-Tempini, M.L.3    Dolan, R.J.4
  • 38
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • M. Seeger, "Bayesian inference and optimal design for the sparse linear model," J. Mach. Learning Res., vol. 9, pp. 759-813, 2008.
    • (2008) J. Mach. Learning Res. , vol.9 , pp. 759-813
    • Seeger, M.1
  • 39
    • 84950441032 scopus 로고
    • Robust statistical modeling using the t distribution
    • K. Lange, R. Little, and J. Taylor, "Robust statistical modeling using the t distribution," J. Amer. Statist. Assoc., vol. 84, pp. 881-896, 1989.
    • (1989) J. Amer. Statist. Assoc. , vol.84 , pp. 881-896
    • Lange, K.1    Little, R.2    Taylor, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.