-
2
-
-
0001287885
-
The relative position and the number of limit cycles of a quadratic differential system
-
Chen L., Wang M. The relative position and the number of limit cycles of a quadratic differential system. Acta Math. Sinica 1979, 22:751-758.
-
(1979)
Acta Math. Sinica
, vol.22
, pp. 751-758
-
-
Chen, L.1
Wang, M.2
-
3
-
-
0029142118
-
Polynomial systems: A lower bound for the Hilbert numbers
-
Christopher C.J., Lloyd N.G. Polynomial systems: A lower bound for the Hilbert numbers. Proc. R. Soc. Lond. Ser. A 1995, 450:219-224.
-
(1995)
Proc. R. Soc. Lond. Ser. A
, vol.450
, pp. 219-224
-
-
Christopher, C.J.1
Lloyd, N.G.2
-
5
-
-
0002383108
-
Cyclicity of planar homoclinic loops and quadratic integrable systems
-
Han M. Cyclicity of planar homoclinic loops and quadratic integrable systems. Sci. China Ser. A 1997, 40:1247-1258.
-
(1997)
Sci. China Ser. A
, vol.40
, pp. 1247-1258
-
-
Han, M.1
-
6
-
-
54049134619
-
Bifurcation theory of limit cycles of planar systems
-
Elsevier, A. Canada, P. Drabek, A. Fonda (Eds.)
-
Han M. Bifurcation theory of limit cycles of planar systems. Handbook of Differential Equations, Ordinary Differential Equations, vol. 3 2006, Elsevier. A. Canada, P. Drabek, A. Fonda (Eds.).
-
(2006)
Handbook of Differential Equations, Ordinary Differential Equations, vol. 3
-
-
Han, M.1
-
7
-
-
34548395982
-
On the number of limit cycles in near-Hamiltonian polynomial systems
-
Han M., Chen G., Sun C. On the number of limit cycles in near-Hamiltonian polynomial systems. Internat. J. Bifur. Chaos 2007, 17(6):2033-2047.
-
(2007)
Internat. J. Bifur. Chaos
, vol.17
, Issue.6
, pp. 2033-2047
-
-
Han, M.1
Chen, G.2
Sun, C.3
-
8
-
-
39449110485
-
Bifurcation of limit cycles in a 4th-order near-Hamiltonian polynomial systems
-
Han M., Shang D., Wang Z., Yu P. Bifurcation of limit cycles in a 4th-order near-Hamiltonian polynomial systems. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2007, 17(11):4117-4144.
-
(2007)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.17
, Issue.11
, pp. 4117-4144
-
-
Han, M.1
Shang, D.2
Wang, Z.3
Yu, P.4
-
9
-
-
18144375228
-
A new cubic system having eleven limit cycles
-
Han M., Wu Y., Bi P. A new cubic system having eleven limit cycles. Discrete Contin. Dyn. Syst. 2005, 12(4):675-686.
-
(2005)
Discrete Contin. Dyn. Syst.
, vol.12
, Issue.4
, pp. 675-686
-
-
Han, M.1
Wu, Y.2
Bi, P.3
-
10
-
-
14844304659
-
On the number and distribution of limit cycles in a cubic system
-
Han M., Zhang T., Zang H. On the number and distribution of limit cycles in a cubic system. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2004, 14(12):4285-4292.
-
(2004)
Internat. J. Bifur. Chaos Appl. Sci. Engrg.
, vol.14
, Issue.12
, pp. 4285-4292
-
-
Han, M.1
Zhang, T.2
Zang, H.3
-
11
-
-
0000832248
-
Mathematical problems
-
(M. Newson, Transl.)
-
Hilbert D. Mathematical problems. Bull. Amer. Math. 1902, 8:437-479. (M. Newson, Transl.).
-
(1902)
Bull. Amer. Math.
, vol.8
, pp. 437-479
-
-
Hilbert, D.1
-
12
-
-
0003137914
-
The origin of limit cycles under perturbation of the equation dw/dz=-Rz/Rw, where R(z,w) is a polynomial
-
Ilyashenko Yu.S. The origin of limit cycles under perturbation of the equation dw/dz=-Rz/Rw, where R(z,w) is a polynomial. Math. USSR-Sb. 1969, 7:353-364.
-
(1969)
Math. USSR-Sb.
, vol.7
, pp. 353-364
-
-
Ilyashenko, Y.1
-
13
-
-
0003278590
-
Finiteness for Limit Cycles
-
Amer. Math. Soc., Providence, RI
-
Ilyashenko Yu.S. Finiteness for Limit Cycles. Transl. Math. Monogr. 1991, vol. 94. Amer. Math. Soc., Providence, RI.
-
(1991)
Transl. Math. Monogr.
, vol.94
-
-
Ilyashenko, Y.1
-
14
-
-
0035997405
-
Centennial history of Hilbert's 16th problem
-
Ilyashenko Yu.S. Centennial history of Hilbert's 16th problem. Bull. Amer. Math. Soc. (N.S.) 2002, 39(3):301-354.
-
(2002)
Bull. Amer. Math. Soc. (N.S.)
, vol.39
, Issue.3
, pp. 301-354
-
-
Ilyashenko, Y.1
-
15
-
-
77954594525
-
An improved lower bound on the number of limit cycles bifurcating from a Hamiltonian planar vector field of degree 7
-
Johnson T., Tucker W. An improved lower bound on the number of limit cycles bifurcating from a Hamiltonian planar vector field of degree 7. Internat. J. Bifur. Chaos 2010, 20(5):1451-1458.
-
(2010)
Internat. J. Bifur. Chaos
, vol.20
, Issue.5
, pp. 1451-1458
-
-
Johnson, T.1
Tucker, W.2
-
16
-
-
63149147133
-
A cubic system with thirteen limit cycles
-
Li C., Liu C., Yang J. A cubic system with thirteen limit cycles. J. Differential Equations 2009, 246:3609-3619.
-
(2009)
J. Differential Equations
, vol.246
, pp. 3609-3619
-
-
Li, C.1
Liu, C.2
Yang, J.3
-
17
-
-
0037246396
-
Hilbert's 16th problem and bifurcations of planar polynomial vector fields
-
Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Internat. J. Bifur. Chaos 2003, 13(1):47-106.
-
(2003)
Internat. J. Bifur. Chaos
, vol.13
, Issue.1
, pp. 47-106
-
-
Li, J.1
-
18
-
-
52649094247
-
6-equivariant planar vector field of degree 5
-
6-equivariant planar vector field of degree 5. Sci. China Ser. A 2002, 45(7):817-826.
-
(2002)
Sci. China Ser. A
, vol.45
, Issue.7
, pp. 817-826
-
-
Li, J.1
Chan, H.2
Chung, K.3
-
19
-
-
84896693675
-
Some lower bounds for H(n) in Hilbert's 16th problem
-
Li J., Chan H., Chung K. Some lower bounds for H(n) in Hilbert's 16th problem. Qual. Theory Dyn. Syst. 2003, 3:345-360.
-
(2003)
Qual. Theory Dyn. Syst.
, vol.3
, pp. 345-360
-
-
Li, J.1
Chan, H.2
Chung, K.3
-
20
-
-
0003132091
-
Planar cubic Hamiltonian systems and distribution of limit cycles of (E3)
-
Li J., Li C. Planar cubic Hamiltonian systems and distribution of limit cycles of (E3). Acta Math. Sinica 1985, 28(4):509-521.
-
(1985)
Acta Math. Sinica
, vol.28
, Issue.4
, pp. 509-521
-
-
Li, J.1
Li, C.2
-
21
-
-
33745295874
-
2-equivariant planar polynomial vector field of degree 7
-
2-equivariant planar polynomial vector field of degree 7. Internat. J. Bifur. Chaos 2006, 16(4):925-943.
-
(2006)
Internat. J. Bifur. Chaos
, vol.16
, Issue.4
, pp. 925-943
-
-
Li, J.1
Zhang, M.2
Li, S.3
-
22
-
-
84905098097
-
q-equivariant planar polynomial vector fields
-
q-equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 2010, 9:167-219.
-
(2010)
Qual. Theory Dyn. Syst.
, vol.9
, pp. 167-219
-
-
Li, J.1
Liu, Y.2
-
23
-
-
0001165830
-
On the number of limit cycles of a differential equation in a neighbourhood of a singular point
-
(in Russian)
-
Otrokov N.T. On the number of limit cycles of a differential equation in a neighbourhood of a singular point. Mat. Sb. 1954, 34:127-144. (in Russian).
-
(1954)
Mat. Sb.
, vol.34
, pp. 127-144
-
-
Otrokov, N.T.1
-
24
-
-
0001304970
-
Algebraic and geometric aspects of the theory of polynomial vector fields
-
Kluwer Academic, London, D. Schlomiuk (Ed.) Bifurcations and Periodic Orbits of Vector Fields
-
Schlomiuk D. Algebraic and geometric aspects of the theory of polynomial vector fields. NATO ASI Ser. C 1993, vol. 408:429-467. Kluwer Academic, London. D. Schlomiuk (Ed.).
-
(1993)
NATO ASI Ser. C
, vol.408
, pp. 429-467
-
-
Schlomiuk, D.1
-
25
-
-
0001012446
-
A concrete example of the existence of four limit cycles for plane quadratic systems
-
Shi S. A concrete example of the existence of four limit cycles for plane quadratic systems. Sci. Sinica 1980, 23:153-158.
-
(1980)
Sci. Sinica
, vol.23
, pp. 153-158
-
-
Shi, S.1
-
26
-
-
0002587254
-
Mathematical problems for the next century
-
Smale S. Mathematical problems for the next century. Math. Intelligencer 1998, 20:7-15.
-
(1998)
Math. Intelligencer
, vol.20
, pp. 7-15
-
-
Smale, S.1
-
28
-
-
20444455852
-
Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation
-
Wang S., Yu P. Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation. Chaos Solitons Fractals 2005, 26(5):1317-1335.
-
(2005)
Chaos Solitons Fractals
, vol.26
, Issue.5
, pp. 1317-1335
-
-
Wang, S.1
Yu, P.2
-
29
-
-
33745121921
-
Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11
-
Wang S., Yu P. Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11. Chaos Solitons Fractals 2006, 30(3):606-621.
-
(2006)
Chaos Solitons Fractals
, vol.30
, Issue.3
, pp. 606-621
-
-
Wang, S.1
Yu, P.2
-
31
-
-
52149110343
-
On the number and distributions of limit cycles in a quintic planar vector field
-
Wu Y., Gao Y., Han M. On the number and distributions of limit cycles in a quintic planar vector field. Internat. J. Bifur. Chaos 2008, 18:1939-1955.
-
(2008)
Internat. J. Bifur. Chaos
, vol.18
, pp. 1939-1955
-
-
Wu, Y.1
Gao, Y.2
Han, M.3
-
34
-
-
24144462859
-
Twelve limit cycles in a cubic case of the 16th Hilbert problem
-
Yu P., Han M. Twelve limit cycles in a cubic case of the 16th Hilbert problem. Internat. J. Bifur. Chaos 2005, 15(7):2191-2205.
-
(2005)
Internat. J. Bifur. Chaos
, vol.15
, Issue.7
, pp. 2191-2205
-
-
Yu, P.1
Han, M.2
-
35
-
-
33846866253
-
The number and distributions of limit cycles for a class of quintic near-Hamiltonian systems
-
Zang H., Han M., Zhang T., Tade M. The number and distributions of limit cycles for a class of quintic near-Hamiltonian systems. Comput. Math. Appl. 2006, 52:1577-1594.
-
(2006)
Comput. Math. Appl.
, vol.52
, pp. 1577-1594
-
-
Zang, H.1
Han, M.2
Zhang, T.3
Tade, M.4
-
36
-
-
2942666280
-
Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations
-
Zhang T., Han M., Zang H., Meng X. Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations. Chaos Solitons Fractals 2004, 22:1127-1138.
-
(2004)
Chaos Solitons Fractals
, vol.22
, pp. 1127-1138
-
-
Zhang, T.1
Han, M.2
Zang, H.3
Meng, X.4
|