-
1
-
-
0000495631
-
On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type
-
Bautin, N. N. [1952] "On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type," Mat. Sbornik (N.S.) 30, 181-196.
-
(1952)
Mat. Sbornik (N.S.)
, vol.30
, pp. 181-196
-
-
Bautin, N.N.1
-
2
-
-
2942646689
-
A study on the existence of limit cycles of a planar system with 3rd-degree polynomials
-
Han, M., Lin, Y. & Yu, P. [2004] "A study on the existence of limit cycles of a planar system with 3rd-degree polynomials," Int. J. Bifurcation and Chaos 14, 41-60.
-
(2004)
Int. J. Bifurcation and Chaos
, vol.14
, pp. 41-60
-
-
Han, M.1
Lin, Y.2
Yu, P.3
-
3
-
-
0038241447
-
Necessary and sufficient conditions for the existence of center
-
Kukles, I. S. [1944] "Necessary and sufficient conditions for the existence of center," Dokl. Akad. Nauk 42, 160-163.
-
(1944)
Dokl. Akad. Nauk
, vol.42
, pp. 160-163
-
-
Kukles, I.S.1
-
4
-
-
0001211762
-
Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system
-
Li, J. & Liu, Z. [1991] "Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system," Publ. Math. 35, 487-506.
-
(1991)
Publ. Math.
, vol.35
, pp. 487-506
-
-
Li, J.1
Liu, Z.2
-
5
-
-
0037246396
-
Hilbert's 16th problem and bifurcations of planar polynomial vector fields
-
Li, J. [2003] "Hilbert's 16th problem and bifurcations of planar polynomial vector fields," Int. J. Bifurcation and Chaos 13, 47-106.
-
(2003)
Int. J. Bifurcation and Chaos
, vol.13
, pp. 47-106
-
-
Li, J.1
-
6
-
-
3042571812
-
On the singularity values of complex autonomous differential systems
-
in Chinese
-
Liu, Y. & Li, J. [1989] "On the singularity values of complex autonomous differential systems," Sci. China (Series A) 3, 245-255 (in Chinese).
-
(1989)
Sci. China (Series A)
, vol.3
, pp. 245-255
-
-
Liu, Y.1
Li, J.2
-
7
-
-
0009530005
-
Criteria for center of a differential equation
-
Malkin, K. E. [1964] "Criteria for center of a differential equation," Volg. Matem. Sbornik 2, 87-91.
-
(1964)
Volg. Matem. Sbornik
, vol.2
, pp. 87-91
-
-
Malkin, K.E.1
-
8
-
-
0001790023
-
Computation of normal forms via a perturbation technique
-
Yu, P. [1998] "Computation of normal forms via a perturbation technique," J. Sound Vibr. 211, 19-38.
-
(1998)
J. Sound Vibr.
, vol.211
, pp. 19-38
-
-
Yu, P.1
|