메뉴 건너뛰기




Volumn 6, Issue 35, 2011, Pages 7910-7920

The modified alternative (G′/G)-expansion method for finding the exact solutions of nonlinear PDEs in mathematical physics

Author keywords

The (G G) expansion method; The caudrey dodd gibbon equation; The drinfeld sokolov wilson equation; The nizhnik novikov vesselov equation; The riccati equation; The traveling wave solutions; The travelling regularised long wave equation

Indexed keywords


EID: 84455181489     PISSN: 19921950     EISSN: None     Source Type: Journal    
DOI: 10.5897/IJPS11.1261     Document Type: Article
Times cited : (35)

References (38)
  • 2
    • 34249777548 scopus 로고    scopus 로고
    • The extended tanh-method and its applications for solving nonlinear physical models
    • Abdou MA (2007). The extended tanh-method and its applications for solving nonlinear physical models. Appl. Math. Comput., 190: 988-996.
    • (2007) Appl. Math. Comput , vol.190 , pp. 988-996
    • Abdou, M.A.1
  • 3
    • 85197331774 scopus 로고
    • Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge Univ. Press. Cambridge
    • Ablowitz MJ, Clarkson PA (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge Univ. Press. Cambridge.
    • (1991) Clarkson PA
    • Ablowitz, M.J.1
  • 4
    • 41949137395 scopus 로고    scopus 로고
    • Application of the (G′ / G) -expansion method for nonlinear evolution equations
    • Bekir A (2008). Application of the (G′ / G) -expansion method for nonlinear evolution equations. Phys. Lett. A, 372: 3400-3406.
    • (2008) Phys. Lett. A , vol.372 , pp. 3400-3406
    • Bekir, A.1
  • 5
    • 65349103554 scopus 로고    scopus 로고
    • The tanh-coth method combined with the Riccati equation for solving nonlinear equation
    • Bekir A (2009). The tanh-coth method combined with the Riccati equation for solving nonlinear equation. Chaos, Solitons Fract., 40: 1467-1474.
    • (2009) Chaos, Solitons Fract , vol.40 , pp. 1467-1474
    • Bekir, A.1
  • 6
    • 12244261648 scopus 로고    scopus 로고
    • Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1) dimensional dispersive long wave equation
    • Chen Y, Wang Q (2005). Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1) dimensional dispersive long wave equation. Chaos, Solitons Fract., 24: 745-757.
    • (2005) Chaos, Solitons Fract , vol.24 , pp. 745-757
    • Chen, Y.1    Wang, Q.2
  • 7
    • 0034606149 scopus 로고    scopus 로고
    • Extended tanh-function method and its applications to nonlinear equations
    • Fan EG (2000). Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A, 277: 212-218.
    • (2000) Phys. Lett. A , vol.277 , pp. 212-218
    • Fan, E.G.1
  • 8
    • 71649092077 scopus 로고    scopus 로고
    • The extended (G′ / G) -expansion method and its applications to the Whitham-Broer-Kaup-like equations and coupled Hirota-Satsuma KdV equations
    • Guo S, Zhou Y (2010). The extended (G′ / G) -expansion method and its applications to the Whitham-Broer-Kaup-like equations and coupled Hirota-Satsuma KdV equations. Appl. Math. Comput., 215: 3214-3221.
    • (2010) Appl. Math. Comput , vol.215 , pp. 3214-3221
    • Guo, S.1    Zhou, Y.2
  • 9
    • 33745177020 scopus 로고    scopus 로고
    • Exp-function method for nonlinear wave equations
    • He JH, Wu XH (2006). Exp-function method for nonlinear wave equations. Chaos, Solitons Fract., 30: 700-708.
    • (2006) Chaos, Solitons Fract , vol.30 , pp. 700-708
    • He, J.H.1    Wu, X.H.2
  • 10
    • 35949040541 scopus 로고
    • Exact solution of the KdV equation for multiple collisions of solutions
    • Hirota R (1971). Exact solution of the KdV equation for multiple collisions of solutions. Phys. Rev. Lett., 27: 1192-1194.
    • (1971) Phys. Rev. Lett , vol.27 , pp. 1192-1194
    • Hirota, R.1
  • 11
    • 79957946700 scopus 로고    scopus 로고
    • Solution of the nonlinear PDAEs by variational iteration method and its applications in nanoelectronics
    • Jafari M, Hosseini MM, Mohyud-Din ST, Ghovatmand M (2011). Solution of the nonlinear PDAEs by variational iteration method and its applications in nanoelectronics. Int. J. Phys. Sci., 6(6): 1535-1539.
    • (2011) Int. J. Phys. Sci , vol.6 , Issue.6 , pp. 1535-1539
    • Jafari, M.1    Hosseini, M.M.2    Mohyud-Din, S.T.3    Ghovatmand, M.4
  • 12
    • 77950368905 scopus 로고    scopus 로고
    • A study on the bilinear Caudrey-Dood-Gibbon equation
    • Jiang B, Bi Q (2010). A study on the bilinear Caudrey-Dood-Gibbon equation. Nonlinear Anal., 72: 4530-4533.
    • (2010) Nonlinear Anal , vol.72 , pp. 4530-4533
    • Jiang, B.1    Bi, Q.2
  • 13
    • 84455176313 scopus 로고    scopus 로고
    • Application of the variational iteration method for solving the fifth order Caudrey-Dood-Gibbon equation
    • Jin L (2010). Application of the variational iteration method for solving the fifth order Caudrey-Dood-Gibbon equation. Int. Math. Forum., 5(66): 3259-3265.
    • (2010) Int. Math. Forum , vol.5 , Issue.66 , pp. 3259-3265
    • Jin, L.1
  • 14
    • 0000607676 scopus 로고
    • Exact solutions of the generalized Kuramoto- Sivashinsky equation
    • Kudryashov NA (1990). Exact solutions of the generalized Kuramoto- Sivashinsky equation. Phys. Lett. A, 147: 287-291.
    • (1990) Phys. Lett. A , vol.147 , pp. 287-291
    • Kudryashov, N.A.1
  • 15
    • 0001635608 scopus 로고
    • On types of nonlinear nonintegrable equations with exact solutions
    • Kudryashov NA (1991). On types of nonlinear nonintegrable equations with exact solutions. Phys. Lett. A, 155: 269-275.
    • (1991) Phys. Lett. A , vol.155 , pp. 269-275
    • Kudryashov, N.A.1
  • 16
    • 0035828886 scopus 로고    scopus 로고
    • Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations
    • Liu S, Fu Z, Liu SD, Zhao Q (2001). Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A, 289: 69-74.
    • (2001) Phys. Lett. A , vol.289 , pp. 69-74
    • Liu, S.1    Fu, Z.2    Liu, S.D.3    Zhao, Q.4
  • 17
    • 13444278927 scopus 로고    scopus 로고
    • Jacobi elliptic function solutions for two variant Boussinesq equations
    • Lu D (2005). Jacobi elliptic function solutions for two variant Boussinesq equations. Chaos, Solitons Fract., 24: 1373-1385.
    • (2005) Chaos, Solitons Fract , vol.24 , pp. 1373-1385
    • Lu, D.1
  • 18
    • 84455186479 scopus 로고
    • Backlund Transformation, Springer-Verlag
    • Miura MR (1978). Backlund Transformation, Springer-Verlag. Berlin.
    • (1978) Berlin
    • Miura, M.R.1
  • 19
    • 78751519495 scopus 로고    scopus 로고
    • Travelling wave solution for non-linear Klein- Gordon equation
    • Neirameh A, Ghasemi R, Roozi A (2010). Travelling wave solution for non-linear Klein- Gordon equation. Int. J. Phys. Sci., 5(16): 2528-2531.
    • (2010) Int. J. Phys. Sci , vol.5 , Issue.16 , pp. 2528-2531
    • Neirameh, A.1    Ghasemi, R.2    Roozi, A.3
  • 21
    • 84455176312 scopus 로고    scopus 로고
    • The solutions of TRLW and Gardner equations by (G′ / G) -expansion method
    • Taghizade N, Neirameh A (2010). The solutions of TRLW and Gardner equations by (G′ / G) -expansion method. Int. J. Nonlinear Sci., 9(3): 305-310.
    • (2010) Int. J. Nonlinear Sci , vol.9 , Issue.3 , pp. 305-310
    • Taghizade, N.1    Neirameh, A.2
  • 22
    • 33947214512 scopus 로고    scopus 로고
    • Many new kinds exact solutions to (2+1)- dimensional Burgers equation and Klein-Gordon equation used a new method with symbolic computation
    • Wang Z, Zhang HQ (2007). Many new kinds exact solutions to (2+1)- dimensional Burgers equation and Klein-Gordon equation used a new method with symbolic computation. Appl. Math. Comput., 186: 693-704.
    • (2007) Appl. Math. Comput , vol.186 , pp. 693-704
    • Wang, Z.1    Zhang, H.Q.2
  • 23
    • 37549033511 scopus 로고    scopus 로고
    • The (G′ / G) -expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics
    • Wang M, Li X, Zhang J (2008). The (G′ / G) -expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A, 372: 417-423.
    • (2008) Phys. Lett. A , vol.372 , pp. 417-423
    • Wang, M.1    Li, X.2    Zhang, J.3
  • 24
    • 33344462593 scopus 로고    scopus 로고
    • Analytical study of the fifth order integrable nonlinear evolution equations by using tanh method
    • Wazwaz AM (2006). Analytical study of the fifth order integrable nonlinear evolution equations by using tanh method. Appl. Math Comput., 174: 289-299.
    • (2006) Appl. Math Comput , vol.174 , pp. 289-299
    • Wazwaz, A.M.1
  • 25
    • 38049041374 scopus 로고    scopus 로고
    • New solutions of distinct physical structures to high-dimensional nonlinear evolution equations
    • Wazwaz AM (2008a). New solutions of distinct physical structures to high-dimensional nonlinear evolution equations. Appl. Math. Comput., 196: 363-368.
    • (2008) Appl. Math. Comput , vol.196 , pp. 363-368
    • Wazwaz, A.M.1
  • 26
    • 39449088871 scopus 로고    scopus 로고
    • Multiple-soliton solutions for the fifth order Caudrey-Dood-Gibbon (CDG) equation
    • Wazwaz AM (2008b). Multiple-soliton solutions for the fifth order Caudrey-Dood-Gibbon (CDG) equation. Appl. Math. Comput., 197: 719-724.
    • (2008) Appl. Math. Comput , vol.197 , pp. 719-724
    • Wazwaz, A.M.1
  • 27
    • 36749112076 scopus 로고
    • The Painleve property for partial differential equations
    • Weiss J, Tabor M, Garnevalle G (1983). The Painleve property for partial differential equations. J. Math. Phys., 24: 522-526.
    • (1983) J. Math. Phys , vol.24 , pp. 522-526
    • Weiss, J.1    Tabor, M.2    Garnevalle, G.3
  • 28
    • 33645066098 scopus 로고    scopus 로고
    • An elliptic equation method and its applications in nonlinear evolution equations
    • Xu G (2006). An elliptic equation method and its applications in nonlinear evolution equations. Chaos, Solitons Fractals, 29: 942-947.
    • (2006) Chaos, Solitons Fractals , vol.29 , pp. 942-947
    • Xu, G.1
  • 29
    • 40249118352 scopus 로고    scopus 로고
    • Exact solution of coupled nonlinear evolution equations
    • Yusufoglu E, Bekir A (2008). Exact solution of coupled nonlinear evolution equations. Chaos, Solitons and Fract., 37: 842-848.
    • (2008) Chaos, Solitons and Fract , vol.37 , pp. 842-848
    • Yusufoglu, E.1    Bekir, A.2
  • 30
    • 7244223299 scopus 로고    scopus 로고
    • Group analysis and modified tanh-function to find the invariant solutions and soliton solution for nonlinear Euler equations
    • Zayed EME, Zedan HA, Gepreel KA (2004). Group analysis and modified tanh-function to find the invariant solutions and soliton solution for nonlinear Euler equations. Int. J. nonlinear. Sci. Nume. Simul., 5: 221-234.
    • (2004) Int. J. Nonlinear. Sci. Nume. Simul , vol.5 , pp. 221-234
    • Zayed, E.M.E.1    Zedan, H.A.2    Gepreel, K.A.3
  • 31
    • 63949088141 scopus 로고    scopus 로고
    • The (G′ / G) -expansion method and its applications to some nonlinear evolution equations in the mathematical physics
    • Zayed EME (2009a). The (G′ / G) -expansion method and its applications to some nonlinear evolution equations in the mathematical physics. J. Appl. Math. Comput., 30: 89-103.
    • (2009) J. Appl. Math. Comput , vol.30 , pp. 89-103
    • Zayed, E.M.E.1
  • 32
    • 67650881966 scopus 로고    scopus 로고
    • New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized (G′ / G) -expansion method
    • Zayed EME (2009b). New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized (G′ / G) -expansion method. J. Phys. A: Math. Theor., 42: 195202-195214.
    • (2009) J. Phys. A: Math. Theor , vol.42 , pp. 195202-195214
    • Zayed, E.M.E.1
  • 33
    • 59349118015 scopus 로고    scopus 로고
    • The (G′ / G) -expansion method for finding traveling wave solutions of nonlinear PDEs in mathematical physics
    • Zayed EME, Gepreel KA (2009). The (G′ / G) -expansion method for finding traveling wave solutions of nonlinear PDEs in mathematical physics. J. Math. Phys., 50: 013502-013513.
    • (2009) J. Math. Phys , vol.50 , pp. 013502-013513
    • Zayed, E.M.E.1    Gepreel, K.A.2
  • 34
    • 84455176311 scopus 로고    scopus 로고
    • The (G′ / G) -expansion method combined with the Riccati equation for finding exact solutions of nonlinear PDEs
    • Zayed EME (2011). The (G′ / G) -expansion method combined with the Riccati equation for finding exact solutions of nonlinear PDEs. J. Appl. Math. Inform., 29(1-2): 351-367.
    • (2011) J. Appl. Math. Inform , vol.29 , Issue.1-2 , pp. 351-367
    • Zayed, E.M.E.1
  • 35
    • 0037158386 scopus 로고    scopus 로고
    • Painleve analysis and special solutions of generalized Broer-Kaup equations
    • Zhang SL, Wu B, Lou SY (2002). Painleve analysis and special solutions of generalized Broer-Kaup equations. Phys. Lett. A, 300: 40-48.
    • (2002) Phys. Lett A , vol.300 , pp. 40-48
    • Zhang, S.L.1    Wu, B.2    Lou, S.Y.3
  • 36
    • 41849116715 scopus 로고    scopus 로고
    • A further improved tanh-function method exactly solving the (2+1)-dimensional dispersive long wave equations
    • Zhang S, Xia TC (2008). A further improved tanh-function method exactly solving the (2+1)-dimensional dispersive long wave equations. Appl. Math. E-Notes, 8: 58-66.
    • (2008) Appl. Math. E-Notes , vol.8 , pp. 58-66
    • Zhang, S.1    Xia, T.C.2
  • 37
    • 42749091472 scopus 로고    scopus 로고
    • A generalized (G′ / G) -expansion method and its applications
    • Zhang J, Wei X, Lu Y (2008). A generalized (G′ / G) -expansion method and its applications. Phys. Lett. A, 372: 3653-3658.
    • (2008) Phys. Lett. A , vol.372 , pp. 3653-3658
    • Zhang, J.1    Wei, X.2    Lu, Y.3
  • 38
    • 77954654267 scopus 로고    scopus 로고
    • An improved (G′ / G) -expansion method for solving nonlinear evolution equations
    • Zhang J, Jiang F, Zhao X (2010). An improved (G′ / G) -expansion method for solving nonlinear evolution equations. Int. J. Com. Math., 87(8): 1716-1725.
    • (2010) Int. J. Com. Math , vol.87 , Issue.8 , pp. 1716-1725
    • Zhang, J.1    Jiang, F.2    Zhao, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.