-
2
-
-
22344457364
-
Darboux transformation and soliton solutions for Boussinesq-Burgers equation
-
Chen A.H., and Li X.M. Darboux transformation and soliton solutions for Boussinesq-Burgers equation. Chaos Solitons Fractals 27 (2006) 43-49
-
(2006)
Chaos Solitons Fractals
, vol.27
, pp. 43-49
-
-
Chen, A.H.1
Li, X.M.2
-
3
-
-
0040713883
-
Aboundant solitary wave structures of the nonlinear coupled scalar field equations
-
Lou S.Y. Aboundant solitary wave structures of the nonlinear coupled scalar field equations. J. Phys. A: Math. Gen. 32 (1999) 4521-4539
-
(1999)
J. Phys. A: Math. Gen.
, vol.32
, pp. 4521-4539
-
-
Lou, S.Y.1
-
4
-
-
0002164187
-
Analytical descriptions of ultrashort optical pulse propagation in a resonant medium
-
Lamb G.L. Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev. Modern Phys. 43 (1971) 99-124
-
(1971)
Rev. Modern Phys.
, vol.43
, pp. 99-124
-
-
Lamb, G.L.1
-
5
-
-
36149034633
-
Painlevé analysis of the nonlinear Schrodinger family of equations
-
Clarkson P.A., and Cosgrove C.M. Painlevé analysis of the nonlinear Schrodinger family of equations. J. Phys. A: Math. Gen. 20 (1987) 2003-2024
-
(1987)
J. Phys. A: Math. Gen.
, vol.20
, pp. 2003-2024
-
-
Clarkson, P.A.1
Cosgrove, C.M.2
-
6
-
-
34748870677
-
Variational iteration method: new development and applications
-
He J.H., and Wu X.H. Variational iteration method: new development and applications. Comput. Math. Appl. 54 (2007) 881-894
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 881-894
-
-
He, J.H.1
Wu, X.H.2
-
8
-
-
0040900507
-
Nonlinear evolution equations generated from the Bäcklund transformation for the Boussinesq equation
-
Hirota R., and Satsuma J. Nonlinear evolution equations generated from the Bäcklund transformation for the Boussinesq equation. Progr. Theoret. Phys. 57 (1977) 797-807
-
(1977)
Progr. Theoret. Phys.
, vol.57
, pp. 797-807
-
-
Hirota, R.1
Satsuma, J.2
-
9
-
-
56249129439
-
Bäcklund transformation in bilinear form to the Hirota-Satsuma equation
-
Satsuma J., and Kaup D.J. Bäcklund transformation in bilinear form to the Hirota-Satsuma equation. J. Phys. Soc. Japan 43 (1978) 692
-
(1978)
J. Phys. Soc. Japan
, vol.43
, pp. 692
-
-
Satsuma, J.1
Kaup, D.J.2
-
10
-
-
3043006968
-
Solitons and discrete eigenfunctions of the recursion operator of non-linear evolution equations: the Caudrey-Dodd-Gibbon-Sawada-Kotera equations
-
Aiyer R.N., Fuchssteiner B., and Oevel W. Solitons and discrete eigenfunctions of the recursion operator of non-linear evolution equations: the Caudrey-Dodd-Gibbon-Sawada-Kotera equations. J. Phys. A: Math. Gen. 19 (1986) 3755-3770
-
(1986)
J. Phys. A: Math. Gen.
, vol.19
, pp. 3755-3770
-
-
Aiyer, R.N.1
Fuchssteiner, B.2
Oevel, W.3
-
11
-
-
39449088871
-
Multiple-soliton solutions for the fifth order Caudrey-Dodd-Gibbon (CDG) equation
-
Wazwaz A.M. Multiple-soliton solutions for the fifth order Caudrey-Dodd-Gibbon (CDG) equation. Appl. Math. Comput. 197 (2008) 719-724
-
(2008)
Appl. Math. Comput.
, vol.197
, pp. 719-724
-
-
Wazwaz, A.M.1
-
12
-
-
33344462593
-
Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method
-
Wazwaz A.M. Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method. Appl. Math. Comput. 174 (2006) 289-299
-
(2006)
Appl. Math. Comput.
, vol.174
, pp. 289-299
-
-
Wazwaz, A.M.1
-
13
-
-
0002150506
-
Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation
-
Lou S.Y. Twelve sets of symmetries of the Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Phys. Lett. A 175 (1993) 23-26
-
(1993)
Phys. Lett. A
, vol.175
, pp. 23-26
-
-
Lou, S.Y.1
-
14
-
-
55949130212
-
Solving the fifth order Caudrey-Dodd-Gibbon (CDG) equation using the exp-function method
-
Xu Y.G., Zhou X.W., and Yao L. Solving the fifth order Caudrey-Dodd-Gibbon (CDG) equation using the exp-function method. Appl. Math. Comput. 206 (2008) 70-73
-
(2008)
Appl. Math. Comput.
, vol.206
, pp. 70-73
-
-
Xu, Y.G.1
Zhou, X.W.2
Yao, L.3
-
15
-
-
54249098179
-
Exact solutions for the general fifth KdV equation by the exp function method
-
Salas A. Exact solutions for the general fifth KdV equation by the exp function method. Appl. Math. Comput. 205 (2008) 291-297
-
(2008)
Appl. Math. Comput.
, vol.205
, pp. 291-297
-
-
Salas, A.1
|