-
1
-
-
33747601116
-
An adaptive local learning-based methodology for voltage regulation in distribution networks with dispersed generation
-
DOI 10.1109/TPWRS.2006.876691
-
D. Villacci, G. Bontempi, and A. Vaccaro An adaptive local learning based methodology for voltage regulation in distribution networks with dispersed generation IEEE Trans. Power. Syst. 21/3 2006 1131 1140 (Pubitemid 44263504)
-
(2006)
IEEE Transactions on Power Systems
, vol.21
, Issue.3
, pp. 1131-1140
-
-
Villacci, D.1
Bontempi, G.2
Vaccaro, A.3
-
3
-
-
78650660186
-
The role of wind forecasting in the successful integration and management of an intermittent energy source
-
J. Lerner, M. Grundmeyer, and M. Garvert The role of wind forecasting in the successful integration and management of an intermittent energy source Energy Central Topic Centers Wind Power 3/8 2009 1 6
-
(2009)
Energy Central Topic Centers Wind Power
, vol.38
, pp. 1-6
-
-
Lerner, J.1
Grundmeyer, M.2
Garvert, M.3
-
4
-
-
0019711229
-
An energy and angular-momentum conserving finite-difference scheme and hybrid vertical coordinates
-
A.J. Simmons, and D.M. Burridge An energy and angular-momentum conserving finite-difference scheme and hybrid vertical coordinates Mon. Wea. Rev. 109 1981 758 766
-
(1981)
Mon. Wea. Rev.
, vol.109
, pp. 758-766
-
-
Simmons, A.J.1
Burridge, D.M.2
-
5
-
-
33244483663
-
Short-term wind forecasting using off-site observations
-
DOI 10.1002/we.179
-
K.A. Larson, and K. Westrick Short-term wind forecasting using off-site observations Wind Energy 9/1 2006 55 62 (Pubitemid 43281984)
-
(2006)
Wind Energy
, vol.9
, Issue.1-2
, pp. 55-62
-
-
Larson, K.A.1
Westrick, K.2
-
6
-
-
77956444173
-
-
U.S. Department of Energy Available online at
-
C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, and G. Conzelmann Wind Power Forecasting: State-of-the-Art 2009 U.S. Department of Energy Available online at http://www.osti.gov/bridge
-
(2009)
Wind Power Forecasting: State-of-the-Art
-
-
Monteiro, C.1
Bessa, R.2
Miranda, V.3
Botterud, A.4
Wang, J.5
Conzelmann, G.6
-
7
-
-
79551697085
-
Comparison of models for wind speed forecasting
-
Baton Rouge, Louisiana (USA)
-
J.C. Palomares-Salas, J.J.G. de la Rosa, J.G. Ramiro, J. Melgar, A. Agüera, and A. Moreno Comparison of models for wind speed forecasting Proc. of International Conference on Computational Science - ICCS 2009, May 25-27, 2009 Baton Rouge, Louisiana (USA) 2009
-
(2009)
Proc. of International Conference on Computational Science - ICCS 2009, May 25-27, 2009
-
-
Palomares-Salas, J.C.1
De La Rosa, J.J.G.2
Ramiro, J.G.3
Melgar, J.4
Agüera, A.5
Moreno, A.6
-
9
-
-
0037224608
-
Forecasting wind with neural networks
-
DOI 10.1016/S0951-8339(02)00053-9, PII S0951833902000539
-
A. More, and M.C. Deo Forecasting wind with neural networks Marine Struct. 16/1 2003 35 49 (Pubitemid 36073109)
-
(2003)
Marine Structures
, vol.16
, Issue.1
, pp. 35-49
-
-
More, A.1
Deo, M.C.2
-
10
-
-
33745813525
-
-
Springer Berlin /Heidelberg Publisher Heraklion pp. 105-115
-
Y.A. Katsigiannis, A.G. Tsikalakis, P.S. Georgilakis, and N.D. Hatziargyriou Improved Wind Power Forecasting Using a Combined Neuro-fuzzy and Artificial Neural Network Model, in Lecture Notes in Computer Science, Adv. in Art. Intell. 2006 Springer Berlin /Heidelberg Publisher Heraklion pp. 105-115
-
(2006)
Improved Wind Power Forecasting Using A Combined Neuro-fuzzy and Artificial Neural Network Model, in Lecture Notes in Computer Science, Adv. in Art. Intell.
-
-
Katsigiannis, Y.A.1
Tsikalakis, A.G.2
Georgilakis, P.S.3
Hatziargyriou, N.D.4
-
12
-
-
34648852323
-
Locally recurrent neural networks for wind speed prediction using spatial correlation
-
DOI 10.1016/j.ins.2007.05.024, PII S0020025507002514
-
T.G. Barbounis, and J.B. Theocharis Locally recurrent neural networks for wind speed prediction using spatial correlation Inf. Sci. 177/24 2007 5775 5797 (Pubitemid 47464279)
-
(2007)
Information Sciences
, vol.177
, Issue.24
, pp. 5775-5797
-
-
Barbounis, T.G.1
Theocharis, J.B.2
-
13
-
-
0035400665
-
The local paradigm for modeling and control: From neuro-fuzzy to lazy learning
-
DOI 10.1016/S0165-0114(99)00172-4, PII S0165011499001724
-
G. Bontempi, H. Bersini, and M. Birattari The local paradigm for modeling and control: from neuro-fuzzy to lazy learning Fuzzy Sets Syst. 121/1 2001 59 72 (Pubitemid 32446651)
-
(2001)
Fuzzy Sets and Systems
, vol.121
, Issue.1
, pp. 59-72
-
-
Bontempi, G.1
Bersini, H.2
Birattari, M.3
-
14
-
-
0013271972
-
Local learning for iterated time-series prediction
-
I. Bratko, S. Dzeroski, Morgan Kaufmann Publishers San Francisco, CA
-
G. Bontempi, M. Birattari, and H. Bersini Local learning for iterated time-series prediction I. Bratko, S. Dzeroski, Machine Learning: Proceedings of the Sixteenth International Conference 1999 Morgan Kaufmann Publishers San Francisco, CA 32 38
-
(1999)
Machine Learning: Proceedings of the Sixteenth International Conference
, pp. 32-38
-
-
Bontempi, G.1
Birattari, M.2
Bersini, H.3
-
15
-
-
12344332535
-
The role of learning methods in the dynamic assessment of power components loading capability
-
DOI 10.1109/TIE.2004.841072
-
D. Villacci, G. Bontempi, A. Vaccaro, and M. Birattari The role of learning methods in the dynamic assessment of power components loading capability IEEE Trans. Ind. Electron. 52/1 2005 280 290 (Pubitemid 40264776)
-
(2005)
IEEE Transactions on Industrial Electronics
, vol.52
, Issue.1
, pp. 280-290
-
-
Villacci, D.1
Bontempi, G.2
Vaccaro, A.3
Birattari, M.4
-
17
-
-
78650941870
-
Estimation of wind power production through short term forecast
-
H. Agabus, and H. Tammoja Estimation of wind power production through short term forecast Oil Shale 26/3 2009 208 219
-
(2009)
Oil Shale
, vol.263
, pp. 208-219
-
-
Agabus, H.1
Tammoja, H.2
-
18
-
-
78650942554
-
-
European Centre for Medium-Range Weather Forecasts
-
European Centre for Medium-Range Weather Forecasts, IFS documentation CY33r1. Available on line at http://www.ecmwf.int/research/ifsdocs/CY33r1/index. html.
-
IFS Documentation CY33r1
-
-
-
20
-
-
77952553004
-
Multiple-output modelling for multi-step-ahead time series forecasting
-
S. Ben Taieb, A. Sorjamaa, and G. Bontempi Multiple-output modelling for multi-step-ahead time series forecasting Neurocomputing 73 10-12 2010 1950 1957
-
(2010)
Neurocomputing
, vol.73
, Issue.1012
, pp. 1950-1957
-
-
Ben Taieb, S.1
Sorjamaa, A.2
Bontempi, G.3
-
22
-
-
84898968508
-
Lazy learning meets the recursive least squares algorithm, in M
-
S. Kearns, S.A. Solla, D.A. Cohn, MIT Press Cambridge, MA
-
M. Birattari, G. Bontempi, and H. Bersini Lazy learning meets the recursive least squares algorithm, in M S. Kearns, S.A. Solla, D.A. Cohn, Advances in Neural Information Processing Systems 11 1999 MIT Press Cambridge, MA 375 381
-
(1999)
Advances in Neural Information Processing Systems 11
, pp. 375-381
-
-
Birattari, M.1
Bontempi, G.2
Bersini, H.3
-
26
-
-
0034288853
-
Out-of-sample tests of forecasting accuracy: An analysis and review
-
J. Tashman Leonard Out-of-sample tests of forecasting accuracy: an analysis and review Int. J. Forecast. 16 4 2000 437 450
-
(2000)
Int. J. Forecast.
, vol.16
, Issue.4
, pp. 437-450
-
-
Tashman Leonard, J.1
-
27
-
-
24344458137
-
Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
-
DOI 10.1109/TPAMI.2005.159
-
H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of max-dependency, max- relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238 (Pubitemid 41245053)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
28
-
-
78650937809
-
An adaptive Framework based on Multi-Model Data Fusion for one day ahead Wind Power Forecasting
-
A. Vaccaro, P. Mercogliano, P. Schiano, and D. Villacci An adaptive Framework based on Multi-Model Data Fusion for one day ahead Wind Power Forecasting Electr. Pow. Syst. Res. 81 3 2011 775 782
-
(2011)
Electr. Pow. Syst. Res.
, vol.81
, Issue.3
, pp. 775-782
-
-
Vaccaro, A.1
Mercogliano, P.2
Schiano, P.3
Villacci, D.4
|