메뉴 건너뛰기




Volumn 83, Issue 1, 2012, Pages 129-135

Adaptive local learning techniques for multiple-step-ahead wind speed forecasting

Author keywords

Data analysis; Intelligent systems; Learning techniques; Wind forecasting

Indexed keywords

ADAPTIVE LOCAL LEARNING; BLACK BOXES; ELECTRICAL GRIDS; GREY-BOX; INTEGRATING MACHINES; KNOWLEDGE MODELING; LEARNING TECHNIQUES; LOCAL LEARNING; MASSIVE DEPLOYMENT; MEDIUM TERM; METEOROLOGICAL SENSORS; NETWORK OPERATIONS; NONHYDROSTATIC MODEL; ORIGINAL MODEL; SIDE EFFECT; SMALL-SCALE MODELING; WIND GENERATORS; WIND SPEED FORECASTING;

EID: 84355166528     PISSN: 03787796     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.epsr.2011.10.008     Document Type: Article
Times cited : (22)

References (28)
  • 1
    • 33747601116 scopus 로고    scopus 로고
    • An adaptive local learning-based methodology for voltage regulation in distribution networks with dispersed generation
    • DOI 10.1109/TPWRS.2006.876691
    • D. Villacci, G. Bontempi, and A. Vaccaro An adaptive local learning based methodology for voltage regulation in distribution networks with dispersed generation IEEE Trans. Power. Syst. 21/3 2006 1131 1140 (Pubitemid 44263504)
    • (2006) IEEE Transactions on Power Systems , vol.21 , Issue.3 , pp. 1131-1140
    • Villacci, D.1    Bontempi, G.2    Vaccaro, A.3
  • 3
    • 78650660186 scopus 로고    scopus 로고
    • The role of wind forecasting in the successful integration and management of an intermittent energy source
    • J. Lerner, M. Grundmeyer, and M. Garvert The role of wind forecasting in the successful integration and management of an intermittent energy source Energy Central Topic Centers Wind Power 3/8 2009 1 6
    • (2009) Energy Central Topic Centers Wind Power , vol.38 , pp. 1-6
    • Lerner, J.1    Grundmeyer, M.2    Garvert, M.3
  • 4
    • 0019711229 scopus 로고
    • An energy and angular-momentum conserving finite-difference scheme and hybrid vertical coordinates
    • A.J. Simmons, and D.M. Burridge An energy and angular-momentum conserving finite-difference scheme and hybrid vertical coordinates Mon. Wea. Rev. 109 1981 758 766
    • (1981) Mon. Wea. Rev. , vol.109 , pp. 758-766
    • Simmons, A.J.1    Burridge, D.M.2
  • 5
    • 33244483663 scopus 로고    scopus 로고
    • Short-term wind forecasting using off-site observations
    • DOI 10.1002/we.179
    • K.A. Larson, and K. Westrick Short-term wind forecasting using off-site observations Wind Energy 9/1 2006 55 62 (Pubitemid 43281984)
    • (2006) Wind Energy , vol.9 , Issue.1-2 , pp. 55-62
    • Larson, K.A.1    Westrick, K.2
  • 8
    • 77951665319 scopus 로고    scopus 로고
    • ARIMA-based time series model of stochastic wind power generation
    • P. Chen, T. Pedersen, B. Bak-Jensen, and Z. Chen ARIMA-based time series model of stochastic wind power generation IEEE Trans. Power. Syst. 25/2 2010 667 676
    • (2010) IEEE Trans. Power. Syst. , vol.252 , pp. 667-676
    • Chen, P.1    Pedersen, T.2    Bak-Jensen, B.3    Chen, Z.4
  • 9
    • 0037224608 scopus 로고    scopus 로고
    • Forecasting wind with neural networks
    • DOI 10.1016/S0951-8339(02)00053-9, PII S0951833902000539
    • A. More, and M.C. Deo Forecasting wind with neural networks Marine Struct. 16/1 2003 35 49 (Pubitemid 36073109)
    • (2003) Marine Structures , vol.16 , Issue.1 , pp. 35-49
    • More, A.1    Deo, M.C.2
  • 12
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • DOI 10.1016/j.ins.2007.05.024, PII S0020025507002514
    • T.G. Barbounis, and J.B. Theocharis Locally recurrent neural networks for wind speed prediction using spatial correlation Inf. Sci. 177/24 2007 5775 5797 (Pubitemid 47464279)
    • (2007) Information Sciences , vol.177 , Issue.24 , pp. 5775-5797
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 13
    • 0035400665 scopus 로고    scopus 로고
    • The local paradigm for modeling and control: From neuro-fuzzy to lazy learning
    • DOI 10.1016/S0165-0114(99)00172-4, PII S0165011499001724
    • G. Bontempi, H. Bersini, and M. Birattari The local paradigm for modeling and control: from neuro-fuzzy to lazy learning Fuzzy Sets Syst. 121/1 2001 59 72 (Pubitemid 32446651)
    • (2001) Fuzzy Sets and Systems , vol.121 , Issue.1 , pp. 59-72
    • Bontempi, G.1    Bersini, H.2    Birattari, M.3
  • 15
    • 12344332535 scopus 로고    scopus 로고
    • The role of learning methods in the dynamic assessment of power components loading capability
    • DOI 10.1109/TIE.2004.841072
    • D. Villacci, G. Bontempi, A. Vaccaro, and M. Birattari The role of learning methods in the dynamic assessment of power components loading capability IEEE Trans. Ind. Electron. 52/1 2005 280 290 (Pubitemid 40264776)
    • (2005) IEEE Transactions on Industrial Electronics , vol.52 , Issue.1 , pp. 280-290
    • Villacci, D.1    Bontempi, G.2    Vaccaro, A.3    Birattari, M.4
  • 17
    • 78650941870 scopus 로고    scopus 로고
    • Estimation of wind power production through short term forecast
    • H. Agabus, and H. Tammoja Estimation of wind power production through short term forecast Oil Shale 26/3 2009 208 219
    • (2009) Oil Shale , vol.263 , pp. 208-219
    • Agabus, H.1    Tammoja, H.2
  • 18
    • 78650942554 scopus 로고    scopus 로고
    • European Centre for Medium-Range Weather Forecasts
    • European Centre for Medium-Range Weather Forecasts, IFS documentation CY33r1. Available on line at http://www.ecmwf.int/research/ifsdocs/CY33r1/index. html.
    • IFS Documentation CY33r1
  • 20
    • 77952553004 scopus 로고    scopus 로고
    • Multiple-output modelling for multi-step-ahead time series forecasting
    • S. Ben Taieb, A. Sorjamaa, and G. Bontempi Multiple-output modelling for multi-step-ahead time series forecasting Neurocomputing 73 10-12 2010 1950 1957
    • (2010) Neurocomputing , vol.73 , Issue.1012 , pp. 1950-1957
    • Ben Taieb, S.1    Sorjamaa, A.2    Bontempi, G.3
  • 22
    • 84898968508 scopus 로고    scopus 로고
    • Lazy learning meets the recursive least squares algorithm, in M
    • S. Kearns, S.A. Solla, D.A. Cohn, MIT Press Cambridge, MA
    • M. Birattari, G. Bontempi, and H. Bersini Lazy learning meets the recursive least squares algorithm, in M S. Kearns, S.A. Solla, D.A. Cohn, Advances in Neural Information Processing Systems 11 1999 MIT Press Cambridge, MA 375 381
    • (1999) Advances in Neural Information Processing Systems 11 , pp. 375-381
    • Birattari, M.1    Bontempi, G.2    Bersini, H.3
  • 26
    • 0034288853 scopus 로고    scopus 로고
    • Out-of-sample tests of forecasting accuracy: An analysis and review
    • J. Tashman Leonard Out-of-sample tests of forecasting accuracy: an analysis and review Int. J. Forecast. 16 4 2000 437 450
    • (2000) Int. J. Forecast. , vol.16 , Issue.4 , pp. 437-450
    • Tashman Leonard, J.1
  • 27
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of max-dependency, max- relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238 (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 28
    • 78650937809 scopus 로고    scopus 로고
    • An adaptive Framework based on Multi-Model Data Fusion for one day ahead Wind Power Forecasting
    • A. Vaccaro, P. Mercogliano, P. Schiano, and D. Villacci An adaptive Framework based on Multi-Model Data Fusion for one day ahead Wind Power Forecasting Electr. Pow. Syst. Res. 81 3 2011 775 782
    • (2011) Electr. Pow. Syst. Res. , vol.81 , Issue.3 , pp. 775-782
    • Vaccaro, A.1    Mercogliano, P.2    Schiano, P.3    Villacci, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.