메뉴 건너뛰기




Volumn 7, Issue 4, 2011, Pages 43-63

Data field for hierarchical clustering

Author keywords

Core objects; Data field; Data mining; Hierarchical clustering; Interaction among objects

Indexed keywords

CLUSTERING PROCESS; CORE OBJECTS; DATA FIELDS; DATA OBJECTS; DATA SPACE; EQUIPOTENTIAL LINES; HIER-ARCHICAL CLUSTERING; IMPACT FACTOR; INTERACTION AMONG OBJECTS; K-MEANS; MUTUAL INTERACTION; NOISY DATA; NUCLEAR FIELDS; RANDOM SAMPLE; SELF-ORGANIZED PROCESS;

EID: 84255210434     PISSN: 15483924     EISSN: 15483932     Source Type: Journal    
DOI: 10.4018/jdwm.2011100103     Document Type: Article
Times cited : (97)

References (32)
  • 2
    • 0343866949 scopus 로고
    • (2nd ed.). Boston, MA: Allyn and Bacon
    • Blatt, F. J. (1986). Principles of physics (2nd ed.). Boston, MA: Allyn and Bacon.
    • (1986) Principles of Physics
    • Blatt, F.J.1
  • 3
    • 77954117917 scopus 로고    scopus 로고
    • An efficient method for discretizing continuous attributes
    • doi:10.4018/jdwm.2010040101
    • Engle, K., & Gangopadhyay, A. (2010). An efficient method for discretizing continuous attributes. International Journal of Data Warehousing and Mining, 6(2), 1-21. doi:10.4018/jdwm.2010040101
    • (2010) International Journal of Data Warehousing and Mining , vol.6 , Issue.2 , pp. 1-21
    • Engle, K.1    Gangopadhyay, A.2
  • 4
    • 4544264104 scopus 로고    scopus 로고
    • CHAMELEON: A hierarchical clustering algorithm using dynamic modeling
    • George, K., Han, E. H., & Kumar, V. (1999). CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 27(3), 329-341.
    • (1999) IEEE Computer , vol.27 , Issue.3 , pp. 329-341
    • George, K.1    Han, E.H.2    Kumar, V.3
  • 6
    • 0038119396 scopus 로고    scopus 로고
    • Techniques of cluster algorithms in data mining
    • DOI 10.1023/A:1016308404627
    • Grabmeier, J., & Rudolph, A. (2002). Techniques of cluster algorithms in data mining. Data Mining and Knowledge Discovery, 6, 303-360. doi:10.1023/A:1016308404627 (Pubitemid 37113862)
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.4 , pp. 303-360
    • Grabmeier, J.1    Rudolph, A.2
  • 7
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm for large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp.73-84). New York, NY: ACM Press. (Pubitemid 128655958)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 9
    • 77956613687 scopus 로고    scopus 로고
    • A novel intrusion detection system based on hierarchical clustering and support vector machines
    • doi:10.1016/j.eswa.2010.06.066
    • Horng, S. J., Su, M. Y., Chen, Y. H., Kao, T. W., Chen, R. J., Lai, J. L., & Perkasa, C. D. (2011). A novel intrusion detection system based on hierarchical clustering and support vector machines. Expert Systems with Applications, 38(1), 306-313. doi:10.1016/j.eswa.2010.06.066
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 306-313
    • Horng, S.J.1    Su, M.Y.2    Chen, Y.H.3    Kao, T.W.4    Chen, R.J.5    Lai, J.L.6    Perkasa, C.7
  • 10
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models
    • Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH model. The Review of Economic Studies, 65, 361-393. doi:10.1111/1467-937X.00050 (Pubitemid 128505119)
    • (1998) Review of Economic Studies , vol.65 , Issue.3 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 12
    • 84860535749 scopus 로고    scopus 로고
    • (Tech. Rep. No. arXiv 0806.2560). Retrieved from
    • Labini, F. S. (2008). Gravitational clustering: An overview (Tech. Rep. No. arXiv 0806.2560). Retrieved from http://arxiv.org/abs/0806.2560
    • (2008) Gravitational Clustering: An Overview
    • Labini, F.S.1
  • 13
    • 0030151635 scopus 로고    scopus 로고
    • Locating and extracting the eye in human face images
    • DOI 10.1016/0031-3203(95)00119-0
    • Lam, K. M., & Yan, H. (1995). Locating and extracting the eye in human face images. Pattern Recognition, 29, 771-779. (Pubitemid 126376471)
    • (1996) Pattern Recognition , vol.29 , Issue.5 , pp. 771-779
    • Lam, K.-M.1    Yan, H.2
  • 15
    • 62949096162 scopus 로고    scopus 로고
    • Chameleon based on clustering feature tree and its application in customer segmentation
    • doi:10.1007/s10479-008-0368-4
    • Li, J., Wang, K., & Xu, L. (2008). Chameleon based on clustering feature tree and its application in customer segmentation. Annals of Operations Research, 168(1), 225-245. doi:10.1007/s10479-008-0368-4
    • (2008) Annals of Operations Research , vol.168 , Issue.1 , pp. 225-245
    • Li, J.1    Wang, K.2    Xu, L.3
  • 18
    • 77953806511 scopus 로고    scopus 로고
    • Hierarchical document clustering using local patterns
    • doi:10.1007/s10618-010-0172-z
    • Malik, H. H., Kender, J. R., Fradkin, D., & Moerchen, F. (2010). Hierarchical document clustering using local patterns. Data Mining and Knowledge Discovery, 21, 153-185. doi:10.1007/s10618-010-0172-z
    • (2010) Data Mining and Knowledge Discovery , vol.21 , pp. 153-185
    • Malik, H.H.1    Kender, J.R.2    Fradkin, D.3    Moerchen, F.4
  • 19
    • 0020848951 scopus 로고
    • Survey of recent advances in hierarchical clustering algorithms
    • Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms. The Computer Journal, 26(4), 354-359. (Pubitemid 14590891)
    • (1983) Computer Journal , vol.26 , Issue.4 , pp. 354-359
    • Murtagh, F.1
  • 20
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • doi:10.1145/1007730.1007731
    • Parsons, L., Haque, E., & Liu, H. (2004). Subspace clustering for high dimensional data: A review. SIGKDD Explorations, 6(1), 90-105. doi:10.1145/1007730.1007731
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 21
    • 22044455069 scopus 로고    scopus 로고
    • Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications
    • DOI 10.1023/A:1009745219419
    • Sander, J., Ester, M., Kriegel, H. P., & Xu, X. W. (1998). Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2, 169-194. doi:10.1023/A:1009745219419 (Pubitemid 128126770)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 22
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • DOI 10.1162/089976601750264965
    • Schölkop, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7), 1443-1471. doi:10.1162/ 089976601750264965 (Pubitemid 33595028)
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1443-1471
    • Scholkopf, B.1    Platt, J.C.2    Shawe-Taylor, J.3    Smola, A.J.4    Williamson, R.C.5
  • 23
    • 84860543150 scopus 로고    scopus 로고
    • A comparative agglomerative hierarchical clustering method to cluster implemented course
    • Sembiring, R. W., Zain, J. M., & Embong, A. (2010). A comparative agglomerative hierarchical clustering method to cluster implemented course. Journal of Computing, 2(12), 1-6.
    • (2010) Journal of Computing , vol.2 , Issue.12 , pp. 1-6
    • Sembiring, R.W.1    Zain, J.M.2    Embong, A.3
  • 24
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423, 623-656.
    • (1948) The Bell System Technical Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 25
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • doi:10.1007/s10618-010-0175-9
    • Silla, C. N. Jr, & Freitas, A. A. (2011). A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22, 31-72. doi:10.1007/s10618-010-0175-9
    • (2011) Data Mining and Knowledge Discovery , vol.22 , pp. 31-72
    • Silla Jr., C.N.1    Freitas, A.A.2
  • 26
    • 70350064287 scopus 로고    scopus 로고
    • A dynamic and semantically-aware technique for document clustering in biomedical literature
    • doi:10.4018/jdwm.2009080703
    • Song, M., Hu, X. H., Yoo, I., & Koppel, E. (2009). A dynamic and semantically-aware technique for document clustering in biomedical literature. International Journal of Data Warehousing and Mining, 5(4), 44-57. doi:10.4018/jdwm.2009080703
    • (2009) International Journal of Data Warehousing and Mining , vol.5 , Issue.4 , pp. 44-57
    • Song, M.1    Hu, X.H.2    Yoo, I.3    Koppel, E.4
  • 27
    • 79953121004 scopus 로고    scopus 로고
    • ASCCN: Arbitrary shaped clustering method with compatible nucleoids
    • doi:10.4018/jdwm.2010100101
    • Wan, R. X., Wang, L. X., & Su, X. K. (2010). ASCCN: Arbitrary shaped clustering method with compatible nucleoids. International Journal of Data Warehousing and Mining, 6(4), 1-15. doi:10.4018/jdwm.2010100101
    • (2010) International Journal of Data Warehousing and Mining , vol.6 , Issue.4 , pp. 1-15
    • Wan, R.X.1    Wang, L.X.2    Su, X.K.3
  • 29
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645-678. doi:10.1109/TNN.2005.845141 (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2
  • 32
    • 24044537630 scopus 로고    scopus 로고
    • Hierarchical clustering algorithms for document datasets
    • DOI 10.1007/s10618-005-0361-3
    • Zhao, Y., & Karypis, G. (2005). Hierarchical clustering algorithms for document datasets. Data Mining and Knowledge Discovery, 10(2), 141-168. doi:10.1007/s10618-005-0361-3 (Pubitemid 41217849)
    • (2005) Data Mining and Knowledge Discovery , vol.10 , Issue.2 , pp. 141-168
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.