-
1
-
-
0043243580
-
Quantum branching processes and the nonlinear dynamics of multiquantum systems
-
V. P. Belavkin, Quantum branching processes and the nonlinear dynamics of multiquantum systems, Dokl. Akad. Nauk SSSR 301 (1988) 1348-1352.
-
(1988)
Dokl. Akad. Nauk SSSR
, vol.301
, pp. 1348-1352
-
-
Belavkin, V.P.1
-
2
-
-
0009224743
-
Multiquantum systems and point processes. I. Generating functionals and nonlinear semigroups
-
V. P. Belavkin, Multiquantum systems and point processes. I. Generating functionals and nonlinear semigroups, Rep. Math. Phys. 28 (1989) 57-90.
-
(1989)
Rep. Math. Phys.
, vol.28
, pp. 57-90
-
-
Belavkin, V.P.1
-
3
-
-
0141882792
-
On a general kinetic equation for many-particle systems with interaction, fragmentation and coagulation
-
DOI 10.1098/rspa.2002.1026
-
V. P. Belavkin and V. N. Kolokol'tsov, On a general kinetic equation for many-particle systems with interaction, fragmentation and coagulation, R. Soc. Lond. Proc. Ser. A Math. Phys. Engrg. Sci. 459 (2003) 727-748. (Pubitemid 38328349)
-
(2003)
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
, vol.459
, Issue.2031
, pp. 727-748
-
-
Belavkin, V.P.1
Kolokol'tsov, V.N.2
-
4
-
-
34250279486
-
The uniformization method in the theory of nonlinear Hamiltonian systems of Vlasov and Hartree type
-
V. P. Belavkin and V. P.Maslov, The uniformization method in the theory of nonlinear Hamiltonian systems of Vlasov and Hartree type, Teor. Mat. Fiz. 33 (1977) 17-31.
-
(1977)
Teor. Mat. Fiz.
, vol.33
, pp. 17-31
-
-
Belavkin, V.P.1
Maslov, V.P.2
-
5
-
-
82855174422
-
The asymptotic dynamics of a system with a large number of particles described by Kolmogorov-Feller equations
-
V. P. Belavkin, V. P. Maslov and S. ̀E. Tariverdiev, The asymptotic dynamics of a system with a large number of particles described by Kolmogorov-Feller equations, Teor. Mat. Fiz. 49 (1981) 298-306.
-
(1981)
Teor. Mat. Fiz.
, vol.49
, pp. 298-306
-
-
Belavkin, V.P.1
Maslov, V.P.2
Tariverdiev, S.È.3
-
7
-
-
0000009557
-
The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles
-
W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Commun. Math. Phys. 56 (1977) 101-113.
-
(1977)
Commun. Math. Phys.
, vol.56
, pp. 101-113
-
-
Braun, W.1
Hepp, K.2
-
8
-
-
77249088584
-
The McKean-Vlasov equation in finite volume
-
L. Chayes and V. Panferov, The McKean-Vlasov equation in finite volume, J. Statist. Phys. 138 (2010) 351-380.
-
(2010)
J. Statist. Phys.
, vol.138
, pp. 351-380
-
-
Chayes, L.1
Panferov, V.2
-
10
-
-
53349120521
-
Dynamical systems of statistical mechanics
-
ed. Y. G. Sinai, Encyclopaedia Math. Sci. Springer
-
R. L. Dobrushin, Y. G. Sinai and Y. M. Sukhov, Dynamical systems of statistical mechanics, in Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics, ed. Y. G. Sinai, Encyclopaedia Math. Sci., Vol. II (Springer, 1989).
-
(1989)
Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics
, vol.2
-
-
Dobrushin, R.L.1
Sinai, Y.G.2
Sukhov, Y.M.3
-
11
-
-
0003215222
-
One-Parameter Semigroups for Linear Evolution Equations
-
Springer-Verlag
-
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Vol. 194 (Springer-Verlag, 2000).
-
(2000)
Graduate Texts in Mathematics
, vol.194
-
-
Engel, K.-J.1
Nagel, R.2
-
15
-
-
77956541750
-
Vlasov scaling for stochastic dynamics of continuous systems
-
D. Finkelshtein, Y. Kondratiev and O. Kutoviy, Vlasov scaling for stochastic dynamics of continuous systems, J. Statist. Phys. 141 (2010) 158-178.
-
(2010)
J. Statist. Phys.
, vol.141
, pp. 158-178
-
-
Finkelshtein, D.1
Kondratiev, Y.2
Kutoviy, O.3
-
16
-
-
84855392877
-
An approximative approach for construction of the Glauber dynamics in continuum
-
DOI: 10.1002/mana.200910248
-
D. Finkelshtein, Y. Kondratiev, O. Kutoviy and E. Zhizhina, An approximative approach for construction of the Glauber dynamics in continuum, Math. Nachr., DOI: 10.1002/mana.200910248.
-
Math. Nachr.
-
-
Finkelshtein, D.1
Kondratiev, Y.2
Kutoviy, O.3
Zhizhina, E.4
-
17
-
-
63749117729
-
Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics
-
D. Finkelshtein, Y. Kondratiev and E. Lytvynov, Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics, Random Oper. Stoch. Equations 15 (2007) 105-126.
-
(2007)
Random Oper. Stoch. Equations
, vol.15
, pp. 105-126
-
-
Finkelshtein, D.1
Kondratiev, Y.2
Lytvynov, E.3
-
18
-
-
67349226154
-
Markov evolutions and hierarchical equations in the continuum. I. One-component systems
-
D. Finkelshtein, Y. Kondratiev and M. J. Oliveira, Markov evolutions and hierarchical equations in the continuum. I. One-component systems, J. Evol. Equations 9 (2009) 197-233.
-
(2009)
J. Evol. Equations
, vol.9
, pp. 197-233
-
-
Finkelshtein, D.1
Kondratiev, Y.2
Oliveira, M.J.3
-
19
-
-
44149099843
-
Spatial birth and death processes as solutions of stochastic equations
-
(electronic)
-
N. L. Garcia and T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Statist. 1 (2006) 281-303 (electronic).
-
(2006)
ALEA Lat. Am. J. Probab. Math. Statist.
, vol.1
, pp. 281-303
-
-
Garcia, N.L.1
Kurtz, T.G.2
-
20
-
-
85145418897
-
Spatial point processes and the projection method
-
N. L. Garcia and T. G. Kurtz, Spatial point processes and the projection method, Prog. Probab. 60 (2008) 271-298.
-
(2008)
Prog. Probab.
, vol.60
, pp. 271-298
-
-
Garcia, N.L.1
Kurtz, T.G.2
-
21
-
-
3543030697
-
Rigorous derivation of the Kirkwood-Monroe equation for small activity
-
N. Grewe and W. Klein, Rigorous derivation of the Kirkwood-Monroe equation for small activity, J. Math. Phys. 17 (1976) 699-703.
-
(1976)
J. Math. Phys.
, vol.17
, pp. 699-703
-
-
Grewe, N.1
Klein, W.2
-
22
-
-
2942645862
-
Nearest neighbor birth and death processes on the real line
-
R. A. Holley and D. W. Stroock, Nearest neighbor birth and death processes on the real line, Acta Math. 140 (1978) 103-154.
-
(1978)
Acta Math.
, vol.140
, pp. 103-154
-
-
Holley, R.A.1
Stroock, D.W.2
-
23
-
-
36849128352
-
Statistical mechanics of fusion
-
J. G. Kirkwood and E. J. Monroe, Statistical mechanics of fusion, J. Chem. Phys. 9 (1941) 514-526.
-
(1941)
J. Chem. Phys.
, vol.9
, pp. 514-526
-
-
Kirkwood, J.G.1
Monroe, E.J.2
-
25
-
-
33646527168
-
On the metrical properties of the configuration space
-
DOI 10.1002/mana.200310392
-
Y. Kondratiev and O. Kutoviy, On the metrical properties of the configuration space, Math. Nachr. 279 (2006) 774-783. (Pubitemid 43707760)
-
(2006)
Mathematische Nachrichten
, vol.279
, Issue.7
, pp. 774-783
-
-
Kondratiev, Yu.G.1
Kutoviy, O.V.2
-
26
-
-
44149098071
-
On non-equilibrium stochastic dynamics for interacting particle systems in continuum
-
Y. Kondratiev, O. Kutoviy and R. Minlos, On non-equilibrium stochastic dynamics for interacting particle systems in continuum, J. Funct. Anal. 255 (2008) 200-227.
-
(2008)
J. Funct. Anal.
, vol.255
, pp. 200-227
-
-
Kondratiev, Y.1
Kutoviy, O.2
Minlos, R.3
-
27
-
-
33751566526
-
Nonequilibrium Glauber-type dynamics in continuum
-
17
-
Y. Kondratiev, O. Kutoviy and E. Zhizhina, Nonequilibrium Glauber-type dynamics in continuum, J. Math. Phys. 47 (2006), 113501, 17.
-
(2006)
J. Math. Phys.
, vol.47
, pp. 113501
-
-
Kondratiev, Y.1
Kutoviy, O.2
Zhizhina, E.3
-
30
-
-
12944316389
-
One-particle subspace of the glauber dynamics generator for continuous particle systems
-
DOI 10.1142/S0129055X04002217
-
Y. Kondratiev, R. Minlos and E. Zhizhina, One-particle subspace of the Glauber dynamics generator for continuous particle systems, Rev. Math. Phys. 16 (2004) 1073-1114. (Pubitemid 40176089)
-
(2004)
Reviews in Mathematical Physics
, vol.16
, Issue.9
, pp. 1073-1114
-
-
Kondratiev, Y.1
Minlos, R.2
Zhizhina, E.3
-
31
-
-
65649127763
-
The generalized Vlasov kinetic equation
-
V. V. Kozlov, The generalized Vlasov kinetic equation, Russ. Math. Surv. 63 (2008) 691-726.
-
(2008)
Russ. Math. Surv.
, vol.63
, pp. 691-726
-
-
Kozlov, V.V.1
-
32
-
-
0016621185
-
States of classical statistical mechanical systems of infinitely many particles. i
-
A. Lenard, States of classical statistical mechanical systems of infinitely many particles. I, Arch. Rational Mech. Anal. 59 (1975) 219-239.
-
(1975)
Arch. Rational Mech. Anal.
, vol.59
, pp. 219-239
-
-
Lenard, A.1
-
33
-
-
0016623758
-
States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures
-
A. Lenard, States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures, Arch. Rational Mech. Anal. 59 (1975) 241-256.
-
(1975)
Arch. Rational Mech. Anal.
, vol.59
, pp. 241-256
-
-
Lenard, A.1
-
34
-
-
77949290218
-
Existence and spatial limit theorems for lattice and continuum particle systems
-
M. D. Penrose, Existence and spatial limit theorems for lattice and continuum particle systems, Probab. Surv. 5 (2008) 1-36.
-
(2008)
Probab. Surv.
, vol.5
, pp. 1-36
-
-
Penrose, M.D.1
-
35
-
-
0001699493
-
Spatial birth-and-death processes
-
405-408
-
C. Preston, Spatial birth-and-death processes, Bull. Inst. Internat. Statist. 46 (1975) 371-391; 405-408.
-
(1975)
Bull. Inst. Internat. Statist.
, vol.46
, pp. 371-391
-
-
Preston, C.1
-
36
-
-
59549099845
-
A functional central limit theorem for spatial birth and death processes
-
X. Qi, A functional central limit theorem for spatial birth and death processes, Adv. Appl. Probab. 40 (2008) 759-797.
-
(2008)
Adv. Appl. Probab.
, vol.40
, pp. 759-797
-
-
Qi, X.1
-
37
-
-
35949020007
-
Kinetic equations from Hamiltonian dynamics: Markovian limits
-
H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys. 52 (1980) 569-615.
-
(1980)
Rev. Mod. Phys.
, vol.52
, pp. 569-615
-
-
Spohn, H.1
-
39
-
-
0003211003
-
The Adjoint of a Semigroup of Linear Operators
-
Springer-Verlag
-
J. van Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Mathematics, Vol. 1529 (Springer-Verlag, 1992).
-
(1992)
Lecture Notes in Mathematics
, vol.1529
-
-
Van Neerven, J.1
|