-
1
-
-
0007288125
-
-
BADDELEY, A. J.(2000). Time-invariance estimating equations. Bernoulli 6, 783-808.
-
BADDELEY, A. J.(2000). Time-invariance estimating equations. Bernoulli 6, 783-808.
-
-
-
-
3
-
-
44149099843
-
Spatial birth and death processes as solutions of stochastic equations
-
GARCIA, N. L. AND KURTZ, T. G.(2006). Spatial birth and death processes as solutions of stochastic equations. Alea 1, 281-303.
-
(2006)
Alea
, vol.1
, pp. 281-303
-
-
GARCIA, N.L.1
KURTZ, T.G.2
-
4
-
-
0010779935
-
Central limit phenomena of various interacting systems
-
HOLLEY, R. AND STROOCK, D. W.(1979). Central limit phenomena of various interacting systems. Ann. Math. 110, 333-393.
-
(1979)
Ann. Math
, vol.110
, pp. 333-393
-
-
HOLLEY, R.1
STROOCK, D.W.2
-
5
-
-
0030501338
-
The central limit theorem for weighted minimal spanning trees on random points
-
KESTEN, H. AND LEE, S.(1996). The central limit theorem for weighted minimal spanning trees on random points. Ann. Appl. Prob. 6, 495-527.
-
(1996)
Ann. Appl. Prob
, vol.6
, pp. 495-527
-
-
KESTEN, H.1
LEE, S.2
-
6
-
-
59549097850
-
-
KURTZ, T. AND LI, S.(2003). Time-invariance modeling and estimation for spatial point processes: general theory. Res. Rep., University of Wisconsin-Madison. Available at http://www.math.wisc.edu/ ~kurtz/papers/shun.pdf.
-
KURTZ, T. AND LI, S.(2003). Time-invariance modeling and estimation for spatial point processes: general theory. Res. Rep., University of Wisconsin-Madison. Available at http://www.math.wisc.edu/ ~kurtz/papers/shun.pdf.
-
-
-
-
7
-
-
0031260688
-
The central limit theorem for Euclidean minimal spanning trees. I
-
LEE, S.(1997). The central limit theorem for Euclidean minimal spanning trees. I. Ann. Appl. Probab. 7, 996-1020.
-
(1997)
Ann. Appl. Probab
, vol.7
, pp. 996-1020
-
-
LEE, S.1
-
8
-
-
59549095753
-
-
MCLEISH, D. L.(1974). Dependent central limit theorems and invariance principles. Ann. Prob. 2, 620-628.
-
MCLEISH, D. L.(1974). Dependent central limit theorems and invariance principles. Ann. Prob. 2, 620-628.
-
-
-
-
9
-
-
0000467039
-
Tightness of probabilities on c([0, 1]; ψ′) and d([0, 1]; ψ′)
-
MITOMA, I.(1983). Tightness of probabilities on c([0, 1]; ψ′) and d([0, 1]; ψ′). Ann. Prob. 4, 989-999.
-
(1983)
Ann. Prob
, vol.4
, pp. 989-999
-
-
MITOMA, I.1
-
10
-
-
0035497809
-
-
PENROSE, M. D.(2001). A central limit theorem with applications to percolation, epidemics and Boolean models. Ann. Probab. 11, 1005-1041.
-
PENROSE, M. D.(2001). A central limit theorem with applications to percolation, epidemics and Boolean models. Ann. Probab. 11, 1005-1041.
-
-
-
-
11
-
-
27644525072
-
-
PENROSE, M. D.(2005). Multivariate spatial central limit theorems with applications to percolation and spatial graphs. Ann. Prob. 33, 1945-1991.
-
PENROSE, M. D.(2005). Multivariate spatial central limit theorems with applications to percolation and spatial graphs. Ann. Prob. 33, 1945-1991.
-
-
-
-
12
-
-
77949290218
-
-
PENROSE, M. D.(2008). Existence and spatial limit theorems for lattice and continuum particle systems. Prob. Surveys 5, 1-36.
-
PENROSE, M. D.(2008). Existence and spatial limit theorems for lattice and continuum particle systems. Prob. Surveys 5, 1-36.
-
-
-
-
13
-
-
59549099637
-
-
QI, X.(2007). The central limit theorems for space-time point processes. Doctoral Thesis, University of Wisconsin-Madison.
-
QI, X.(2007). The central limit theorems for space-time point processes. Doctoral Thesis, University of Wisconsin-Madison.
-
-
-
-
15
-
-
59549104344
-
-
RIPLEY, B. D.(1979). Algorithm AS 137: Simulating spatial patterns: dependent samples from a multivariate density. Appl. Statist. 28, 109-112.
-
RIPLEY, B. D.(1979). Algorithm AS 137: Simulating spatial patterns: dependent samples from a multivariate density. Appl. Statist. 28, 109-112.
-
-
-
|