-
1
-
-
84945708508
-
Matrix bandwidth and profile reduction
-
CRANE, H.L., JR., GIBBS, N. E., POOLE, W. G., JR., AND STOCKMEYER, P. K. 1976. Matrix bandwidth and profile reduction. ACM Trans. Math. Softw. 2, 375-377.
-
(1976)
ACM Trans. Math. Softw.
, vol.2
, pp. 375-377
-
-
Crane Jr., H.L.1
Gibbs, N.E.2
Poole Jr., W.G.3
Stockmeyer, P.K.4
-
2
-
-
0000659575
-
A divide and conquer method for the symmetric tridiagonal eigenproblem
-
CUPPEN, J. J. M. 1981. A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177-195.
-
(1981)
Numer. Math.
, vol.36
, pp. 177-195
-
-
Cuppen, J.J.M.1
-
4
-
-
84879834718
-
Multi-sweep algorithms for the symmetric eigenproblem
-
J. M. L. M. Palma, J. J. Dongarra, and V. Hernandez, Eds., Lecture Notes in Computer Science, Springer-Verlag, New York
-
GANSTERER, W. N., KVASNICKA, D. F., AND UEBERHUBER, C. W. 1998. Multi-sweep algorithms for the symmetric eigenproblem. In VECPAR'98-Third International Conference for Vector and Parallel Processing, J. M. L. M. Palma, J. J. Dongarra, and V. Hernandez, Eds., Lecture Notes in Computer Science, vol. 1573, Springer-Verlag, New York, 20-28.
-
(1998)
VECPAR'98-Third International Conference for Vector and Parallel Processing
, vol.1573
, pp. 20-28
-
-
Gansterer, W.N.1
Kvasnicka, D.F.2
Ueberhuber, C.W.3
-
5
-
-
0040668385
-
An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems
-
GANSTERER, W. N., WARD, R. C., AND MULLER, R. P. 2002. An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems. ACM Trans. Math. Softw. 28, 45-58.
-
(2002)
ACM Trans. Math. Softw.
, vol.28
, pp. 45-58
-
-
Gansterer, W.N.1
Ward, R.C.2
Muller, R.P.3
-
6
-
-
1842531885
-
Computing approximate eigenpairs of symmetric block tridiagonal matrices
-
GANSTERER, W. N., WARD, E. C., MULLER. R. P., AND GODDARD, W. A., III 2003. Computing approximate eigenpairs of symmetric block tridiagonal matrices. SIAM J. Sci. Camput. 25, 65-85.
-
(2003)
SIAM J. Sci. Camput.
, vol.25
, pp. 65-85
-
-
Gansterer, W.N.1
Ward, E.C.2
Muller, R.P.3
Goddard III, W.A.4
-
8
-
-
0001406470
-
A hybrid profile reduction algorithm
-
GIBBS, N. E. 1986. A hybrid profile reduction algorithm. ACM Trans. Math. Softw. 2, 378-387.
-
(1986)
ACM Trans. Math. Softw.
, vol.2
, pp. 378-387
-
-
Gibbs, N.E.1
-
9
-
-
0016939622
-
An algorithm for reducing the bandwidth and profile of a sparse matrix
-
GIBBS, N. E., POOLE, W. G., JR., AND STOCKMEYER, P. K 1976a. An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal 13, 236-250.
-
(1976)
SIAM J. Numer. Anal
, vol.13
, pp. 236-250
-
-
Gibbs, N.E.1
Poole Jr., W.G.2
Stockmeyer, P.K.3
-
10
-
-
0017269689
-
A comparison of several bandwidth and profile reduction algorithms
-
GIBBS, N. E., POOLE, W. G., JR., AND STOCKMEYER, P. K. 1976b. A comparison of several bandwidth and profile reduction algorithms, ACM Trans. Math. Softw. 2, 322-330.
-
(1976)
ACM Trans. Math. Softw.
, vol.2
, pp. 322-330
-
-
Gibbs, N.E.1
Poole Jr., W.G.2
Stockmeyer, P.K.3
-
11
-
-
21844526695
-
A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem
-
Gu, M. AND EISENSTAT, S.C. 1995. A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16, 172-191.
-
(1995)
SIAM J. Matrix Anal. Appl.
, vol.16
, pp. 172-191
-
-
Gu, M.1
Eisenstat, S.C.2
-
12
-
-
84976820773
-
The Gibbs-Poole-Stockmeyer and Gibbs-King algorithms for reordering sparse matrices
-
LEWIS. J. G. 1982. The Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms for reordering sparse matrices. ACM Trans. Math. Softw., 8, 190-194.
-
(1982)
ACM Trans. Math. Softw.
, vol.8
, pp. 190-194
-
-
Lewis, J.G.1
-
15
-
-
36849100805
-
Approximate self-consistent molecular orbital theory. V. Intermediate neglect of differential overlap
-
POPLE, J. A., BEVERIDGE, D. L., AND DOBOSH, P. A. 1967. Approximate self-consistent molecular orbital theory. V. Intermediate neglect of differential overlap. J. Chem. Physics 47, 2026.
-
(1967)
J. Chem. Physics
, vol.47
, pp. 2026
-
-
Pople, J.A.1
Beveridge, D.L.2
Dobosh, P.A.3
-
16
-
-
36849120328
-
Approximate self-consistent molecular orbital theory. I. Invariant procedures
-
POPLE, J. A., SANTRY, D. P., AND SEGAL, G. A. 1965. Approximate self-consistent molecular orbital theory. I. Invariant procedures. J. Chem. Physics 43, S129.
-
(1965)
J. Chem. Physics
, vol.43
-
-
Pople, J.A.1
Santry, D.P.2
Segal, G.A.3
-
17
-
-
36849116605
-
Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap
-
POPLE, J. A. AND SEGAL, G. A. 1965. Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap. J. Chem. Physics, 43, S136.
-
(1965)
J. Chem. Physics
, vol.43
-
-
Pople, J.A.1
Segal, G.A.2
-
18
-
-
36849103011
-
Approximate self-consistent molecular orbital theory. III. CNDO results for AB2 and AB3 systems
-
POPLE, J. A. AND SEGAL, G. A. 1966. Approximate self-consistent molecular orbital theory. III. CNDO results for AB2 and AB3 systems. J. Chem. Physics 44, 3829.
-
(1966)
J. Chem. Physics
, vol.44
, pp. 3829
-
-
Pople, J.A.1
Segal, G.A.2
-
19
-
-
0022661211
-
An algorithm for profile and wavefront reduction of sparse matrices
-
SLOAN, S. W. 1986. An algorithm for profile and wavefront reduction of sparse matrices Int. J. Numer. Meth. Eng. 23, 239-251.
-
(1986)
Int. J. Numer. Meth. Eng.
, vol.23
, pp. 239-251
-
-
Sloan, S.W.1
-
20
-
-
0024768767
-
A FORTRAN program for profile and wavefront reduction
-
SLOAN, S. W. 1989. A FORTRAN program for profile and wavefront reduction. Int. J. Numer. Meth. Eng. 28, 2651-2679.
-
(1989)
Int. J. Numer. Meth. Eng.
, vol.28
, pp. 2651-2679
-
-
Sloan, S.W.1
|