-
1
-
-
0003706460
-
-
SIAM Press, Philadelphia, PA
-
ANDERSON, E., BAI, Z., BISCHOF, C. H., BLACKFORD, S., DEMMEL, J. W., DONGARRA, J. J., DU CROZ, J., GREENBAUM, A., HAMMARLING, S., MCKENNEY, A., AND SORENSEN, D. C. 1999. LAPACK Users' Guide, 3rd ed. SIAM Press, Philadelphia, PA.
-
(1999)
LAPACK Users' Guide, 3rd Ed.
-
-
Anderson, E.1
Bai, Z.2
Bischof, C.H.3
Blackford, S.4
Demmel, J.W.5
Dongarra, J.J.6
Du Croz, J.7
Greenbaum, A.8
Hammarling, S.9
McKenney, A.10
Sorensen, D.C.11
-
2
-
-
0026931028
-
Divide and conquer algorithms for the bandsymmetric eigenvalue problem
-
ARBENZ, P. 1992. Divide and conquer algorithms for the bandsymmetric eigenvalue problem. Parallel Comput. 18, 1105-1128.
-
(1992)
Parallel Comput.
, vol.18
, pp. 1105-1128
-
-
Arbenz, P.1
-
3
-
-
0012103078
-
Restricted rank modification of the symmetric eigenvalue problem: Theoretical considerations
-
ARBENZ, P., GANDER, W., AND GOLUB, G. H. 1988. Restricted rank modification of the symmetric eigenvalue problem: Theoretical considerations. Linear Algebra Appl. 104, 75-95.
-
(1988)
Linear Algebra Appl.
, vol.104
, pp. 75-95
-
-
Arbenz, P.1
Gander, W.2
Golub, G.H.3
-
4
-
-
0002931349
-
On the spectral decomposition of Hermitian matrices modified by low rank perturbations with applications
-
ARBENZ, P. AND GOLUB, G. H. 1988. On the spectral decomposition of Hermitian matrices modified by low rank perturbations with applications. SIAM J. Matrix Anal. Appl. 9, 40-58.
-
(1988)
SIAM J. Matrix Anal. Appl.
, vol.9
, pp. 40-58
-
-
Arbenz, P.1
Golub, G.H.2
-
5
-
-
21144463329
-
Error analysis of update methods for the symmetric eigenvalue problem
-
BARLOW, J. L. 1993. Error analysis of update methods for the symmetric eigenvalue problem. SIAM J. Matrix Anal. Appl. 14, 598-618.
-
(1993)
SIAM J. Matrix Anal. Appl.
, vol.14
, pp. 598-618
-
-
Barlow, J.L.1
-
6
-
-
0002316189
-
Rank-one modification of the symmetric eigenproblem
-
BUNCH, J. R., NIELSEN, C. P., AND SORENSEN, D. C. 1978. Rank-one modification of the symmetric eigenproblem. Numer. Math. 31, 31-48.
-
(1978)
Numer. Math.
, vol.31
, pp. 31-48
-
-
Bunch, J.R.1
Nielsen, C.P.2
Sorensen, D.C.3
-
7
-
-
0000659575
-
A divide and conquer method for the symmetric tridiagonal eigenproblem
-
CUPPEN, J. J. M. 1981. A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177-195.
-
(1981)
Numer. Math.
, vol.36
, pp. 177-195
-
-
Cuppen, J.J.M.1
-
9
-
-
0000417182
-
A fully parallel algorithm for the symmetric eigenproblem
-
DONGARRA, J. J. AND SORENSEN, D. C. 1987. A fully parallel algorithm for the symmetric eigenproblem. SIAM J. Sci. Comput. 8, s139-s154.
-
(1987)
SIAM J. Sci. Comput.
, vol.8
-
-
Dongarra, J.J.1
Sorensen, D.C.2
-
10
-
-
0038831719
-
-
Tech. Rep. AURORA TR1999-14, Vienna University of Technology
-
GANSTERER, W. N., SCHNEID, J., AND UEBERHUBER, C. W. 1999. A divide-and-conquer method for symmetric banded eigenproblems. Part II: Complexity analysis. Tech. Rep. AURORA TR1999-14, Vienna University of Technology.
-
(1999)
A Divide-and-conquer Method for Symmetric Banded Eigenproblems. Part II: Complexity Analysis
-
-
Gansterer, W.N.1
Schneid, J.2
Ueberhuber, C.W.3
-
11
-
-
0040609750
-
A low-complexity divide-and-conquer method for computing eigenvalues and eigenvectors of symmetric band matrices
-
GANSTERER, W. N., SCHNEID, J., AND UEBERHUBER, C. W. 2001. A low-complexity divide-and-conquer method for computing eigenvalues and eigenvectors of symmetric band matrices. BIT 41, 967-976.
-
(2001)
BIT
, vol.41
, pp. 967-976
-
-
Gansterer, W.N.1
Schneid, J.2
Ueberhuber, C.W.3
-
12
-
-
0040016694
-
-
Tech. Rep. UT-CS-00-447, Department of Computer Science, University of Tennessee, Knoxville, TN
-
GANSTERER, W. N., WARD, R. C., AND MULLER, R. P. 2000. An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems. Tech. Rep. UT-CS-00-447, Department of Computer Science, University of Tennessee, Knoxville, TN.
-
(2000)
An Extension of the Divide-and-conquer Method for a Class of Symmetric Block-tridiagonal Eigenproblems
-
-
Gansterer, W.N.1
Ward, R.C.2
Muller, R.P.3
-
14
-
-
0001070999
-
Some modified matrix eigenvalue problems
-
GOLUB, G. H. 1973. Some modified matrix eigenvalue problems. SIAM Rev. 15, 318-334.
-
(1973)
SIAM Rev.
, vol.15
, pp. 318-334
-
-
Golub, G.H.1
-
15
-
-
0004236492
-
-
Johns Hopkins University Press, Baltimore, MD
-
GOLUB, G. H. AND VAN LOAN, C. F. 1996. Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore, MD.
-
(1996)
Matrix Computations, 3rd Ed.
-
-
Golub, G.H.1
Van Loan, C.F.2
-
16
-
-
21844525426
-
A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem
-
GU, M. AND EISENSTAT, S. C. 1994. A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 15, 1266-1276.
-
(1994)
SIAM J. Matrix Anal. Appl.
, vol.15
, pp. 1266-1276
-
-
Gu, M.1
Eisenstat, S.C.2
-
17
-
-
21844526695
-
A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem
-
GU, M. AND EISENSTAT, S. C. 1995. A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16, 172-191.
-
(1995)
SIAM J. Matrix Anal. Appl.
, vol.16
, pp. 172-191
-
-
Gu, M.1
Eisenstat, S.C.2
-
18
-
-
0013137925
-
Solving the secular equations stably and efficiently
-
University of California at Berkeley, Berkeley, CA. Nov.
-
LI, R.-C. 1994. Solving the secular equations stably and efficiently. LAPACK Working Note 89, University of California at Berkeley, Berkeley, CA. Nov.
-
(1994)
LAPACK Working Note
, vol.89
-
-
Li, R.-C.1
-
20
-
-
36849100805
-
Approximate self-consistent molecular orbital theory. V. Intermediate neglect of differential overlap
-
POPLE, J. A., BEVERIDGE, D. L., AND DOBOSH, P. A. 1967. Approximate self-consistent molecular orbital theory. V. Intermediate neglect of differential overlap. J. Chem. Physics 47, 2026.
-
(1967)
J. Chem. Physics
, vol.47
, pp. 2026
-
-
Pople, J.A.1
Beveridge, D.L.2
Dobosh, P.A.3
-
21
-
-
36849120328
-
Approximate self-consistent molecular orbital theory. I. Invariant procedures
-
POPLE, J. A., SANTRY, D. P., AND SEGAL, G. A. 1965. Approximate self-consistent molecular orbital theory. I. Invariant procedures. J. Chem. Physics 43, S129.
-
(1965)
J. Chem. Physics
, vol.43
-
-
Pople, J.A.1
Santry, D.P.2
Segal, G.A.3
-
22
-
-
36849116605
-
Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap
-
POPLE, J. A. AND SEGAL, G. A. 1965. Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap. J. Chem. Physics 43, S136.
-
(1965)
J. Chem. Physics
, vol.43
-
-
Pople, J.A.1
Segal, G.A.2
-
23
-
-
36849103011
-
Approximate self-consistent molecular orbital theory. III. Cndo results for ab2 and ab3 systems
-
POPLE, J. A. AND SEGAL, G. A. 1966. Approximate self-consistent molecular orbital theory. III. CNDO results for ab2 and ab3 systems. J. Chem. Physics 44, 3289.
-
(1966)
J. Chem. Physics
, vol.44
, pp. 3289
-
-
Pople, J.A.1
Segal, G.A.2
-
24
-
-
0039424334
-
A serial implementation of Cuppen's divide and conquer algorithm for the symmetric eigenvalue problem
-
Computer Science Division (EECS), University of California at Berkeley, Berkeley, CA
-
RUTTER, J. 1994. A serial implementation of Cuppen's divide and conquer algorithm for the symmetric eigenvalue problem. LAPACK Working Note 69, Computer Science Division (EECS), University of California at Berkeley, Berkeley, CA.
-
(1994)
LAPACK Working Note
, vol.69
-
-
Rutter, J.1
-
25
-
-
0026402822
-
On the orthogonality of eigenvectors computed by divide-and-conquer techniques
-
SORENSEN, D. C. AND TANG, P. T. P. 1991. On the orthogonality of eigenvectors computed by divide-and-conquer techniques. SIAM J. Numer. Anal. 28, 1752-1775.
-
(1991)
SIAM J. Numer. Anal.
, vol.28
, pp. 1752-1775
-
-
Sorensen, D.C.1
Tang, P.T.P.2
-
27
-
-
0033293693
-
A parallel divide and conquer algorithm for the symmetric eigenvalue problem on distributed memory architectures
-
TISSEUR, F. AND DONGARRA, J. J. 1999. A parallel divide and conquer algorithm for the symmetric eigenvalue problem on distributed memory architectures. SIAM J. Sci. Comput. 20, 2223-2236.
-
(1999)
SIAM J. Sci. Comput.
, vol.20
, pp. 2223-2236
-
-
Tisseur, F.1
Dongarra, J.J.2
|