메뉴 건너뛰기




Volumn 403-408, Issue , 2012, Pages 4512-4521

Prediction of power signal in nuclear reactors with neural network based intelligent predictors in the presence of 1/fα type sensor noise

Author keywords

ANN; Dynamic neural network; Fractional order noise; Prediction; RBF network; Reactor power

Indexed keywords

ANN; DYNAMIC NEURAL NETWORK; FRACTIONAL ORDER; RBF NETWORK; REACTOR POWER;

EID: 83255181915     PISSN: 10226680     EISSN: None     Source Type: Book Series    
DOI: 10.4028/www.scientific.net/AMR.403-408.4512     Document Type: Conference Paper
Times cited : (4)

References (24)
  • 2
    • 70349322423 scopus 로고    scopus 로고
    • Design and optimization of fuzzy-PID controller for the nuclear reactor power control
    • November
    • Cheng Liu, Jin-Feng Peng, Fu-Yu Zhao and Chong Li, "Design and optimization of fuzzy-PID controller for the nuclear reactor power control," Nuclear Engineering and Design, vol. 239, no. 11, pp. 2311-2316, November 2009
    • (2009) Nuclear Engineering and Design , vol.239 , Issue.11 , pp. 2311-2316
    • Liu, C.1    Peng, J.-F.2    Zhao, F.-Y.3    Li, C.4
  • 4
    • 79955896226 scopus 로고
    • Random Processes in nuclear reactors
    • October
    • Michael H. R. Williams, "Random Processes in nuclear reactors", IEEE Transactions on Nuclear Science, vol. 22, no. 5, October 1975, pp. 2121-2122.
    • (1975) IEEE Transactions on Nuclear Science , vol.22 , Issue.5 , pp. 2121-2122
    • Michael, H.1    Williams, R.2
  • 5
    • 0019525906 scopus 로고
    • On-line analysis of reactor noise using time series analysis
    • V.G. McGevna, "On-line analysis of reactor noise using time series analysis", IEEE Transactions on Nuclear Science, vol. 29, no. 1, pp. 684-687, 1982
    • (1982) IEEE Transactions on Nuclear Science , vol.29 , Issue.1 , pp. 684-687
    • McGevna, V.G.1
  • 6
    • 56949104734 scopus 로고    scopus 로고
    • Numerical tools applied to power reactor noise analysis
    • January
    • Christophe Demaziere and Imre Pazsit, "Numerical tools applied to power reactor noise analysis", Progress in Nuclear Energy, vol. 51, no. 1, pp. 67-81, January 2009.
    • (2009) Progress in Nuclear Energy , vol.51 , Issue.1 , pp. 67-81
    • Demaziere, C.1    Pazsit, I.2
  • 7
    • 0031143532 scopus 로고    scopus 로고
    • Application of the Wiener-Hermite functional method to a linear feedback model of point reactor kinetics driven by random reactivity noise
    • May
    • K. Behringer and J. Pineyro, "Application of the Wiener-Hermite functional method to a linear feedback model of point reactor kinetics driven by random reactivity noise", Annals of Nuclear Energy, vol. 24, no. 8, pp. 587-623, May 1997.
    • (1997) Annals of Nuclear Energy , vol.24 , Issue.8 , pp. 587-623
    • Behringer, K.1    Pineyro, J.2
  • 8
    • 31344439937 scopus 로고    scopus 로고
    • Neural and genetic-based approaches to nuclear transient identification including 'don't know' response
    • April
    • Antonio. C. A. Mol, Jose C. S. Almeida, Claudio M.N.A. Pereira, Eugenio R. Marins, Celso Marcelo F. Lapa, "Neural and genetic-based approaches to nuclear transient identification including 'don't know' response", Progress in Nuclear Energy, vol. 48, no. 3, pp. 268-282, April 2006.
    • (2006) Progress in Nuclear Energy , vol.48 , Issue.3 , pp. 268-282
    • Mol, A.C.A.1    Almeida, J.C.S.2    Pereira, C.M.N.A.3    Marins, E.R.4    Lapa, C.M.F.5
  • 9
    • 0001818505 scopus 로고    scopus 로고
    • Soft computing technologies in nuclear engineering applications
    • Robert E. Uhrig, Lefteri H. Tsoukalas, "Soft computing technologies in nuclear engineering applications", Progress in Nuclear Energy, vol. 34, no. 1, pp. 13-75, 1999.
    • (1999) Progress in Nuclear Energy , vol.34 , Issue.1 , pp. 13-75
    • Uhrig, R.E.1    Tsoukalas, L.H.2
  • 10
    • 34250216049 scopus 로고    scopus 로고
    • Application of artificial neural networks to nuclear power plant transient diagnosis
    • October
    • T. V. Santosh, G. Vinod, R. K. Saraf, A. K. Ghosh, H. S. Kushwaha, "Application of artificial neural networks to nuclear power plant transient diagnosis", Reliability Engineering & System Safety, vol. 92, no. 10, pp. 1468-1472, October 2007.
    • (2007) Reliability Engineering & System Safety , vol.92 , Issue.10 , pp. 1468-1472
    • Santosh, T.V.1    Vinod, G.2    Saraf, R.K.3    Ghosh, A.K.4    Kushwaha, H.S.5
  • 11
    • 76449108826 scopus 로고    scopus 로고
    • Computational intelligence-based trajectory scheduling for control of nuclear research reactors
    • May
    • Ramazan Coban, "Computational intelligence-based trajectory scheduling for control of nuclear research reactors", Progress in Nuclear Energy, vol. 52, no. 4, pp.415-424, May 2010.
    • (2010) Progress in Nuclear Energy , vol.52 , Issue.4 , pp. 415-424
    • Coban, R.1
  • 12
    • 34248575230 scopus 로고    scopus 로고
    • Simulating the dynamics of the neutron flux in a nuclear reactor by locally recurrent neural networks
    • June
    • F. Cadini, E. Zio, N. Pedroni, "Simulating the dynamics of the neutron flux in a nuclear reactor by locally recurrent neural networks", Annals of Nuclear Energy, vol. 34, no. 6, pp. 483-495, June 2007.
    • (2007) Annals of Nuclear Energy , vol.34 , Issue.6 , pp. 483-495
    • Cadini, F.1    Zio, E.2    Pedroni, N.3
  • 13
    • 60449098796 scopus 로고    scopus 로고
    • Nuclear reactor dynamics on-line estimation by locally recurrent neural networks
    • April
    • Enrico Zio, Matteo Broggi and Nicola Pedroni, "Nuclear reactor dynamics on-line estimation by Locally Recurrent Neural Networks", Progress in Nuclear Energy, vol. 51, no. 3, pp.573-581, April 2009.
    • (2009) Progress in Nuclear Energy , vol.51 , Issue.3 , pp. 573-581
    • Zio, E.1    Broggi, M.2    Pedroni, N.3
  • 14
    • 0036643136 scopus 로고    scopus 로고
    • Identification of a nuclear reactor core (VVER) using recurrent neural networks
    • July
    • Mehrdad Boroushaki, Mohammad B. Ghofrani and Caro Lucas, "Identification of a nuclear reactor core (VVER) using recurrent neural networks", Annals of Nuclear Energy, vol. 29, no. 10, pp.1225-1240, July 2002.
    • (2002) Annals of Nuclear Energy , vol.29 , Issue.10 , pp. 1225-1240
    • Boroushaki, M.1    Ghofrani, M.B.2    Lucas, C.3
  • 15
    • 67649482640 scopus 로고    scopus 로고
    • Estimation of research reactor core parameters using cascade feed forward artificial neural networks
    • August-September
    • Afshin Hedayat, Hadi Davilu, Ahmad Abdollahzadeh Barfrosh and Kamran Sepanloo, "Estimation of research reactor core parameters using cascade feed forward artificial neural networks", Progress in Nuclear Energy, vol. 51, no. 6-7, pp. 709-718, August-September 2009.
    • (2009) Progress in Nuclear Energy , vol.51 , Issue.6-7 , pp. 709-718
    • Hedayat, A.1    Davilu, H.2    Barfrosh, A.A.3    Sepanloo, K.4
  • 16
    • 2342461044 scopus 로고    scopus 로고
    • Application of artificial network for safety core parameters prediction in LWRRS
    • Hakim Mazrou, M. Hamadouche, "Application of artificial network for safety core parameters prediction in LWRRS", Progress in Nuclear Energy, vol. 44, no. 3, pp. 263-275, 2004.
    • (2004) Progress in Nuclear Energy , vol.44 , Issue.3 , pp. 263-275
    • Mazrou, H.1    Hamadouche, M.2
  • 17
    • 0026135924 scopus 로고
    • Thermal power prediction of nuclear power plant using neural network and parity space model
    • Myung-Sub Roh, Se-Woo Cheon and Soon-Heung Chang, "Thermal power prediction of nuclear power plant using neural network and parity space model", IEEE Transactions on Nuclear Science, vol. 38, no. 2, pp. 866-872, 1991.
    • (1991) IEEE Transactions on Nuclear Science , vol.38 , Issue.2 , pp. 866-872
    • Roh, M.-S.1    Cheon, S.-W.2    Chang, S.-H.3
  • 18
    • 33746375347 scopus 로고    scopus 로고
    • A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes
    • Enrico Zio, "A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes", IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 1460-1478, 2006.
    • (2006) IEEE Transactions on Nuclear Science , vol.53 , Issue.3 , pp. 1460-1478
    • Zio, E.1
  • 19
    • 0032637956 scopus 로고    scopus 로고
    • Predicting neutron diffusion eigen values with a query-based adaptive neural architecture
    • Michael G. Lysenko, Hing-Ip Wong, G. Ivan Maldonado, "Predicting neutron diffusion eigen values with a query-based adaptive neural architecture", IEEE Transactions on Nuclear Science, vol. 10, no. 4, pp. 790-800, 1999.
    • (1999) IEEE Transactions on Nuclear Science , vol.10 , Issue.4 , pp. 790-800
    • Lysenko, M.G.1    Wong, H.-I.2    Maldonado, G.I.3
  • 20
    • 0027675620 scopus 로고
    • Application of neural networks to signal prediction in nuclear power plant
    • W.J. Kim, S.H. Chang, B. H. Lee, "Application of neural networks to signal prediction in nuclear power plant", IEEE Transactions on Nuclear Science, vol. 40, no. 5, pp. 1337-1341, 1993.
    • (1993) IEEE Transactions on Nuclear Science , vol.40 , Issue.5 , pp. 1337-1341
    • Kim, W.J.1    Chang, S.H.2    Lee, B.H.3
  • 22
    • 0000501589 scopus 로고
    • Fractional Brownian motions, fractional noises and applications
    • October
    • Benoit B. Mandelbrot and John W. Van Ness, "Fractional Brownian motions, fractional noises and applications", SIAM review, vol. 10, no. 4, pp. 422-437, October 1968
    • (1968) SIAM Review , vol.10 , Issue.4 , pp. 422-437
    • Mandelbrot, B.B.1    Van Ness, J.W.2
  • 23
    • 0029304629 scopus 로고
    • α power law noise generation
    • α power law noise generation", Proceedings of the IEEE, vol. 83, no. 5, pp. 802-827, 1995.
    • (1995) Proceedings of the IEEE , vol.83 , Issue.5 , pp. 802-827
    • Kasdin, N.J.1
  • 24
    • 0016495091 scopus 로고
    • Linear prediction: A tutorial review
    • April
    • J Makhoul, "Linear prediction: A tutorial review", Proceedings of the IEEE, vol. 63, no. 4, April 1975.
    • (1975) Proceedings of the IEEE , vol.63 , Issue.4
    • Makhoul, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.