메뉴 건너뛰기




Volumn 39, Issue 5, 2011, Pages 2410-2447

Factor models and variable selection in high-dimensional regression analysis

Author keywords

Factor models; Functional regression; Linear regression; Model selection

Indexed keywords


EID: 82655189987     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/11-AOS905     Document Type: Article
Times cited : (54)

References (29)
  • 1
    • 0037277111 scopus 로고    scopus 로고
    • Inferential theory for factor models of large dimensions
    • MR1956857
    • BAI, J. (2003). Inferential theory for factor models of large dimensions. Econometrica 71 135-171. MR1956857
    • (2003) Econometrica , vol.71 , pp. 135-171
    • Bai, J.1
  • 2
    • 68349144362 scopus 로고    scopus 로고
    • Panel data models with interactive fixed effects
    • MR2547073
    • BAI, J. (2009). Panel data models with interactive fixed effects. Econometrica 77 1229-1279. MR2547073
    • (2009) Econometrica , vol.77 , pp. 1229-1279
    • Bai, J.1
  • 3
    • 0036221554 scopus 로고    scopus 로고
    • Determining the number of factors in approximate factor models
    • BAI, J. and NG, S. (2002). Determining the number of factors in approximate factor models. Econometrica 70 191-221. MR1926259 (Pubitemid 34288243)
    • (2002) Econometrica , vol.70 , Issue.1 , pp. 191-221
    • Bai, J.1    Ng, S.2
  • 4
    • 0038182831 scopus 로고    scopus 로고
    • Monetary policy in a data-rich environment
    • DOI 10.1016/S0304-3932(03)00024-2, PII S0304393203000242
    • BERNANKE, B. S. and BOIVIN, J. (2003). Monetary policy in a data-rich environment. Journal of Monetary Economics 50 525-546. (Pubitemid 36613918)
    • (2003) Journal of Monetary Economics , vol.50 , Issue.3 , pp. 525-546
    • Bernanke, B.S.1    Boivin, J.2
  • 5
    • 0003362033 scopus 로고    scopus 로고
    • Matrix analysis
    • Springer, New York. MR1477662
    • BHATIA, R. (1997). Matrix Analysis. Graduate Texts in Mathematics 169. Springer, New York. MR1477662
    • (1997) Graduate Texts in Mathematics , vol.169
    • Bhatia, R.1
  • 6
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • MR2387969
    • BICKEL, P. J. and LEVINA, E. (2008). Regularized estimation of large covariance matrices. Ann. Statist. 36 199-227. MR2387969
    • (2008) Ann. Statist. , vol.36 , pp. 199-227
    • Bickel, P.J.1    Levina, E.2
  • 7
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • MR2533469
    • BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732. MR2533469
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 8
    • 33847349358 scopus 로고    scopus 로고
    • Prediction in functional linear regression
    • MR2291496
    • CAI, T. T. and HALL, P. (2006). Prediction in functional linear regression. Ann. Statist. 34 2159-2179. MR2291496
    • (2006) Ann. Statist. , vol.34 , pp. 2159-2179
    • Cai, T.T.1    Hall, P.2
  • 9
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351. MR2382644
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 11
    • 34248349998 scopus 로고    scopus 로고
    • CLT in functional linear regression models
    • MR2299711
    • CARDOT, H.,MAS, A. and SARDA, P. (2007). CLT in functional linear regression models. Probab. Theory Related Fields 138 325-361. MR2299711
    • (2007) Probab. Theory Related Fields , vol.138 , pp. 325-361
    • Cardot, H.1    Mas, A.2    Sarda, P.3
  • 12
    • 65349171811 scopus 로고    scopus 로고
    • Smoothing splines estimators for functional linear regression
    • MR2488344
    • CRAMBES, C.,KNEIP, A. and SARDA, P. (2009). Smoothing splines estimators for functional linear regression. Ann. Statist. 37 35-72. MR2488344
    • (2009) Ann. Statist. , vol.37 , pp. 35-72
    • Crambes, C.1    Kneip, A.2    Sarda, P.3
  • 13
    • 0036622664 scopus 로고    scopus 로고
    • Linear functional regression: The case of fixed design and functional response
    • MR1926066
    • CUEVAS, A., FEBRERO, M. and FRAIMAN, R. (2002). Linear functional regression: The case of fixed design and functional response. Canad. J. Statist. 30 285-300. MR1926066
    • (2002) Canad. J. Statist. , vol.30 , pp. 285-300
    • Cuevas, A.1    Febrero, M.2    Fraiman, R.3
  • 16
    • 35348874516 scopus 로고    scopus 로고
    • Methodology and convergence rates for functional linear regression
    • MR2332269
    • HALL, P. and HOROWITZ, J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35 70-91. MR2332269
    • (2007) Ann. Statist. , vol.35 , pp. 70-91
    • Hall, P.1    Horowitz, J.L.2
  • 18
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • MR0144363
    • HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30. MR0144363
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 19
    • 1542678851 scopus 로고    scopus 로고
    • Inference for density families using functional principal component analysis
    • With comments and a rejoinder by the authors. MR1946423
    • KNEIP, A. and UTIKAL, K. J. (2001). Inference for density families using functional principal component analysis. J. Amer. Statist. Assoc. 96 519-542. With comments and a rejoinder by the authors. MR1946423
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 519-542
    • Kneip, A.1    Utikal, K.J.2
  • 20
    • 72249100613 scopus 로고    scopus 로고
    • The Dantzig selector and sparsity oracle inequalities
    • MR2555200
    • KOLTCHINSKII, V. (2009). The Dantzig selector and sparsity oracle inequalities. Bernoulli 15 799-828. MR2555200
    • (2009) Bernoulli , vol.15 , pp. 799-828
    • Koltchinskii, V.1
  • 21
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. MR2278363 (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 22
    • 0001501999 scopus 로고
    • Some tools for functional data analysis (with discussion)
    • MR1125714
    • RAMSAY, J. O. and DALZELL, C. J. (1991). Some tools for functional data analysis (with discussion). J. Roy. Statist. Soc. Ser. B 53 539-572. MR1125714
    • (1991) J. Roy. Statist. Soc. Ser. B , vol.53 , pp. 539-572
    • Ramsay, J.O.1    Dalzell, C.J.2
  • 23
    • 0036970448 scopus 로고    scopus 로고
    • Forecasting using principal components from a large number of predictors
    • DOI 10.1198/016214502388618960
    • STOCK, J. H. and WATSON, M. W. (2002). Forecasting using principal components from a large number of predictors. J. Amer. Statist. Assoc. 97 1167-1179. MR1951271 (Pubitemid 36136574)
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.460 , pp. 1167-1179
    • Stock, J.H.1    Watson, M.W.2
  • 24
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 25
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • MR2396809
    • VAN DE GEER, S. A. (2008). High-dimensional generalized linear models and the lasso. Ann. Statist. 36 614-645. MR2396809
    • (2008) Ann. Statist. , vol.36 , pp. 614-645
    • Van De Geer, S.A.1
  • 26
    • 19744369661 scopus 로고    scopus 로고
    • Functional linear regression analysis for longitudinal data
    • DOI 10.1214/009053605000000660
    • YAO, F., MÜLLER, H.-G. and WANG, J.-L. (2005). Functional linear regression analysis for longitudinal data. Ann. Statist. 33 2873-2903. MR2253106 (Pubitemid 43384879)
    • (2005) Annals of Statistics , vol.33 , Issue.6 , pp. 2873-2903
    • Yao, F.1    Muller, H.-G.2    Wang, J.-L.3
  • 27
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563. MR2274449 (Pubitemid 44866738)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.