메뉴 건너뛰기




Volumn 39, Issue 4, 2012, Pages 4532-4544

Learning feature-projection based classifiers

Author keywords

Classification learning; Feature projections; Inductive learning

Indexed keywords

BOUNDARY NOISE; CLASSIFICATION ALGORITHM; CLASSIFICATION LEARNING; DATA SETS; FEATURE CLASSIFICATION; FEATURE PROJECTION; INDUCTIVE LEARNING; SPACE REQUIREMENTS; UCI REPOSITORY;

EID: 82255192313     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.09.133     Document Type: Article
Times cited : (3)

References (21)
  • 4
    • 58349094507 scopus 로고    scopus 로고
    • Feature selection for text classification with Naive Bayes
    • J. Chena, H. Huanga, S. Tiana, and Y. Qua Feature selection for text classification with Naive Bayes Expert Systems with Applications 36 3 2009 5432 5435
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5432-5435
    • Chena, J.1    Huanga, H.2    Tiana, S.3    Qua, Y.4
  • 5
    • 77955229842 scopus 로고    scopus 로고
    • Feature interval learning algorithms for classification
    • A. Dayanik Feature interval learning algorithms for classification Knowledge-Based Systems 23 5 2010 402 417
    • (2010) Knowledge-Based Systems , vol.23 , Issue.5 , pp. 402-417
    • Dayanik, A.1
  • 6
    • 84947935339 scopus 로고    scopus 로고
    • Classification by Voting Feature Intervals
    • Machine Learning: ECML-97
    • G. Demiröz, and H. Güvenir Classification by voting feature intervals M. van Someren, G. Widmer, Proceedings of 9th european conference on machine learning, Prague, Czech Republic 1997 Springer 85 92 (Pubitemid 127061917)
    • (1997) Lecture Notes In Computer Science , Issue.1224 , pp. 85-92
    • Demiroez, G.1    Altay Guevenir, H.2
  • 7
    • 0031269184 scopus 로고    scopus 로고
    • On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
    • P. Domingos, and M. Pazzani On the optimality of the simple Bayesian classifier under zero-one loss Machine Learning 29 2-3 1997 103 130 (Pubitemid 127510035)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 11
    • 0030130153 scopus 로고    scopus 로고
    • Classification by feature partitioning
    • H. Güvenir, and I. irin Classification by feature partitioning Machine Learning 23 1996 47 67 (Pubitemid 126737383)
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 47-67
    • Guvenir, H.A.1
  • 12
    • 0032127185 scopus 로고    scopus 로고
    • Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals
    • DOI 10.1016/S0933-3657(98)00028-1, PII S0933365798000281
    • H. Güvenir, G. Demiröz, and N. Ilter Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals Artificial Intelligence in Medicine 13 1998 147 165 (Pubitemid 28341691)
    • (1998) Artificial Intelligence in Medicine , vol.13 , Issue.3 , pp. 147-165
    • Guvenir, H.A.1    Demiroz, G.2    Ilter, N.3
  • 13
    • 0343441518 scopus 로고    scopus 로고
    • An expert system for the differential diagnosis of erythemato-squamous diseases
    • H.A. Güvenir, and N. Emeksiz An expert system for the differential diagnosis of erythemato-squamous diseases Expert Systems With Applications 18 1 2000 43 49
    • (2000) Expert Systems with Applications , vol.18 , Issue.1 , pp. 43-49
    • Güvenir, H.A.1    Emeksiz, N.2
  • 17
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The independence assumption in information retrieval
    • Springer London, UK
    • D.D. Lewis Naive (Bayes) at forty: The independence assumption in information retrieval Proceedings of the 10th European conference on machine learning 1998 Springer London, UK 4 15
    • (1998) Proceedings of the 10th European Conference on Machine Learning , pp. 4-15
    • Lewis, D.D.1
  • 21
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for Naive-Bayes learning: Managing discretization bias and variance
    • Y. Yang, and G.I. Webb Discretization for Naive-Bayes learning: Managing discretization bias and variance Machine Learning 74 1 2009 39 74
    • (2009) Machine Learning , vol.74 , Issue.1 , pp. 39-74
    • Yang, Y.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.