메뉴 건너뛰기




Volumn 10, Issue 4, 2011, Pages 1130-1150

Integrated dynamic modeling of contaminant fate and transport within a soil-plant system

Author keywords

LAI; Leaf area index; Transpiration stream concentration factor; TSCF; Water stress index; WSI

Indexed keywords

LAI; LEAF AREA INDEX; TRANSPIRATION STREAM CONCENTRATION FACTOR; TSCF; WATER STRESS INDEX; WSI;

EID: 82055181664     PISSN: None     EISSN: 15391663     Source Type: Journal    
DOI: 10.2136/vzj2010.0123     Document Type: Article
Times cited : (5)

References (54)
  • 1
    • 0034129843 scopus 로고    scopus 로고
    • Daisy: An open soil-crop-atmosphere system model
    • doi:10.1016/S1364-8152(00)00003-7
    • Abrahamsen, P., and S. Hansen. 2000. Daisy: An open soil-crop-atmosphere system model. Environ. Model. Softw. 15:313-330. doi:10.1016/S1364-8152(00)00003-7
    • (2000) Environ. Model. Softw. , vol.15 , pp. 313-330
    • Abrahamsen, P.1    Hansen, S.2
  • 3
    • 82055207554 scopus 로고
    • Ground water modeling in multilayer aquifers: Unsteady flow
    • Boca Raton, FL
    • Aral, M.M. 1990. Ground water modeling in multilayer aquifers: Unsteady flow. Lewis Publ., Boca Raton, FL.
    • (1990) Lewis Publ
    • Aral, M.M.1
  • 4
    • 61349194602 scopus 로고    scopus 로고
    • Modeling the fate and transport of non-volatile organic chemicals in the agro-ecosystem: A case study of Cameron Highlands, Malaysia
    • doi:10.1016/j.psep.2008.09.001
    • Batiha, M.A., A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, Z. Fisal, W.R.W. Daud, and M.M. Batiha. 2009. Modeling the fate and transport of non-volatile organic chemicals in the agro-ecosystem: A case study of Cameron Highlands, Malaysia. Process Saf. Environ. Prot. 87:121-134. doi:10.1016/j.psep.2008.09.001
    • (2009) Process Saf. Environ. Prot. , vol.87 , pp. 121-134
    • Batiha, M.A.1    Kadhum, A.A.H.2    Mohamad, A.B.3    Takriff, M.S.4    Fisal, Z.5    Daud, W.R.W.6    Batiha, M.M.7
  • 5
    • 0033555974 scopus 로고    scopus 로고
    • Long-term simulation of water movement in soils using massconserving procedures
    • doi:10.1016/S0309-1708(98)00032-3
    • Berg, P. 1999. Long-term simulation of water movement in soils using massconserving procedures. Adv. Water Resour. 22:419-430. doi:10.1016/S0309-1708(98)00032-3
    • (1999) Adv. Water Resour. , vol.22 , pp. 419-430
    • Berg, P.1
  • 6
    • 34548513780 scopus 로고    scopus 로고
    • A fast numerical solution to the general mass-conservation equation for solutes and solids in aquatic sediments
    • Berg, P., D. Swaney, S. Rysgaard, B. Thamdrup, and H. Fossing. 2007. A fast numerical solution to the general mass-conservation equation for solutes and solids in aquatic sediments. J. Mar. Res. 65:317-343.
    • (2007) J. Mar. Res. , vol.65 , pp. 317-343
    • Berg, P.1    Swaney, D.2    Rysgaard, S.3    Thamdrup, B.4    Fossing, H.5
  • 7
    • 10644280118 scopus 로고    scopus 로고
    • Comparison of root water uptake modules using either the surface energy balance or potential transpiration
    • Braud, I., N. Varado, and A. Olioso. 2005. Comparison of root water uptake modules using either the surface energy balance or potential transpiration. J. Hydrol. 301:267-286.
    • (2005) J. Hydrol. , vol.301 , pp. 267-286
    • Braud, I.1    Varado, N.2    Olioso, A.3
  • 8
    • 84986942433 scopus 로고
    • Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley
    • doi:10.1002/ps.2780130506
    • Briggs, G.G., R.H. Bromilow, and A.A. Evans. 1982. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci. 13:495-504. doi:10.1002/ps.2780130506
    • (1982) Pestic. Sci. , vol.13 , pp. 495-504
    • Briggs, G.G.1    Bromilow, R.H.2    Evans, A.A.3
  • 9
    • 0025585761 scopus 로고
    • A general mass-conservative numerical solution for the unsaturated flow equation
    • doi:10.1029/WR026i007p01483
    • Celia, M.A., E.T. Bouloutas, and R.L. Zarba. 1990. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26:1483-1496. doi:10.1029/WR026i007p01483
    • (1990) Water Resour. Res. , vol.26 , pp. 1483-1496
    • Celia, M.A.1    Bouloutas, E.T.2    Zarba, R.L.3
  • 10
    • 0345874714 scopus 로고    scopus 로고
    • Semidiscrete pesticide transport modeling and application
    • Chu, X., and M.A. Mariño. 2004. Semidiscrete pesticide transport modeling and application. J. Hydrol. 285:19-40.
    • (2004) J. Hydrol. , vol.285 , pp. 19-40
    • Chu, X.1    Mariño, M.A.2
  • 11
    • 31144457617 scopus 로고    scopus 로고
    • Improved compartmental modeling and application to three-phase contaminant transport in unsaturated porous media
    • doi:10.1061/(ASCE)0733-9372(2006)132:2(211)
    • Chu, X., and M.A. Mariño. 2006. Improved compartmental modeling and application to three-phase contaminant transport in unsaturated porous media. J. Environ. Eng. 132:211-219. doi:10.1061/(ASCE)0733-9372(2006)132:2(211)
    • (2006) J. Environ. Eng. , vol.132 , pp. 211-219
    • Chu, X.1    Mariño, M.A.2
  • 12
    • 84862763216 scopus 로고    scopus 로고
    • Transport parameters and mass balance equations for vegetation in a Level III fugacity model
    • Available at, accessed 16 Nov. 2010; verified 15 June 2011, Peterborough, ON
    • Cousins, I.T., and D. Mackay. 2000. Transport parameters and mass balance equations for vegetation in a Level III fugacity model. Available at www.trentu.ca/academic/aminss/envmodel/CEMC200001.pdf (accessed 16 Nov. 2010; verified 15 June 2011). Can. Environ. Modell. Ctr., Trent Uni., Peterborough, ON.
    • (2000) Can. Environ. Modell. Ctr., Trent Uni.
    • Cousins, I.T.1    Mackay, D.2
  • 13
    • 0034947891 scopus 로고    scopus 로고
    • Strategies for including vegetation compartments in multimedia models
    • doi:10.1016/S0045-6535(00)00514-2
    • Cousins, I.T., and D. Mackay. 2001. Strategies for including vegetation compartments in multimedia models. Chemosphere 44:643-654. doi:10.1016/S0045-6535(00)00514-2
    • (2001) Chemosphere , vol.44 , pp. 643-654
    • Cousins, I.T.1    Mackay, D.2
  • 15
    • 61649084452 scopus 로고    scopus 로고
    • Chemical hydrophobicity and uptake by plant roots
    • doi:10.1021/es801751x
    • Dettenmaier, E.M., W.J. Doucette, and B. Bugbee. 2009. Chemical hydrophobicity and uptake by plant roots. Environ. Sci. Technol. 43:324-329. doi:10.1021/es801751x
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 324-329
    • Dettenmaier, E.M.1    Doucette, W.J.2    Bugbee, B.3
  • 18
    • 10644260591 scopus 로고    scopus 로고
    • River networks and groundwater flow: A simultaneous solution of a coupled system
    • doi:10.1016/j.jhydrol.2004.06.034
    • Gunduz, O., and M.M. Aral. 2005. River networks and groundwater flow: A simultaneous solution of a coupled system. J. Hydrol. 301:216-234. doi:10.1016/j.jhydrol.2004.06.034
    • (2005) J. Hydrol. , vol.301 , pp. 216-234
    • Gunduz, O.1    Aral, M.M.2
  • 19
    • 0030867775 scopus 로고    scopus 로고
    • A novel and simple model of the uptake of organic chemicals by vegetation from air and soil
    • doi:10.1016/S0045-6535(97)00182-3
    • Hung, H., and D. Mackay. 1997. A novel and simple model of the uptake of organic chemicals by vegetation from air and soil. Chemosphere 35:959-977. doi:10.1016/S0045-6535(97)00182-3
    • (1997) Chemosphere , vol.35 , pp. 959-977
    • Hung, H.1    Mackay, D.2
  • 20
    • 38649131418 scopus 로고    scopus 로고
    • Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models
    • doi:10.1016/j.chemosphere.2007.08.047
    • Juraske, R., A. Anton, and F. Castells. 2008. Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models. Chemosphere 70:1748-1755. doi:10.1016/j.chemosphere.2007.08.047
    • (2008) Chemosphere , vol.70 , pp. 1748-1755
    • Juraske, R.1    Anton, A.2    Castells, F.3
  • 21
  • 22
    • 0035980575 scopus 로고    scopus 로고
    • An exponential root-water-uptake model with water stress compensation
    • doi:10.1016/S0022-1694(01)00456-5
    • Li, K.Y., R. De Jong, and J.B. Boisvert. 2001. An exponential root-water-uptake model with water stress compensation. J. Hydrol. 252:189-204. doi:10.1016/S0022-1694(01)00456-5
    • (2001) J. Hydrol. , vol.252 , pp. 189-204
    • Li, K.Y.1    de Jong, R.2    Boisvert, J.B.3
  • 23
    • 34047264692 scopus 로고    scopus 로고
    • Root-water-uptake based upon a new water stress reduction and an asymptotic root distribute on function
    • doi:10.1175/EI177.1
    • Li, K.Y., R. De Jong, M.T. Coe, and N. Ramankutty. 2006. Root-water-uptake based upon a new water stress reduction and an asymptotic root distribute on function. Earth Interact. 10:1-22. doi:10.1175/EI177.1
    • (2006) Earth Interact , vol.10 , pp. 1-22
    • Li, K.Y.1    de Jong, R.2    Coe, M.T.3    Ramankutty, N.4
  • 24
    • 79959603194 scopus 로고    scopus 로고
    • Multimedia environmental models: The fugacity approach
    • Boca Raton, FL
    • Mackay, D. 2001. Multimedia environmental models: The fugacity approach. Lewis Publ., Boca Raton, FL.
    • (2001) Lewis Publ
    • Mackay, D.1
  • 25
    • 41849137937 scopus 로고    scopus 로고
    • SPFC: A tool to improve water management and hay production in the Crau region
    • doi:10.1007/s00271-007-0099-3
    • Mailhol, J., and A. Merot. 2008. SPFC: A tool to improve water management and hay production in the Crau region. Irrig. Sci. 26:289-302. doi:10.1007/s00271-007-0099-3
    • (2008) Irrig. Sci. , vol.26 , pp. 289-302
    • Mailhol, J.1    Merot, A.2
  • 26
    • 0031466461 scopus 로고    scopus 로고
    • Sorghum and sunflower evapotranspiration and yield from simulated leaf area index
    • doi:10.1016/S0378-3774(97)00029-2
    • Mailhol, J.C., A.A. Olufayo, and P. Ruelle. 1997. Sorghum and sunflower evapotranspiration and yield from simulated leaf area index. Agric. Water Manage. 35:167-182. doi:10.1016/S0378-3774(97)00029-2
    • (1997) Agric. Water Manage. , vol.35 , pp. 167-182
    • Mailhol, J.C.1    Olufayo, A.A.2    Ruelle, P.3
  • 27
    • 0002603908 scopus 로고
    • Dynamics of leaching, uptake, and translocation: The Simulation Model Network Atmosphere-Plant-Soil (SNAPS)
    • S. Trapp and J.C. McFarlane (ed.)
    • Matthies, M., and H. Behrendt. 1995. Dynamics of leaching, uptake, and translocation: The Simulation Model Network Atmosphere-Plant-Soil (SNAPS). p. 215-243. In S. Trapp and J.C. McFarlane (ed.) Plant contaminate on: Modeling and simulation of organic chemical processes. Lewis Publ., Boca Raton, FL.
    • (1995) Plant Contaminate On: Modeling and Simulation of Organic Chemical Processes , pp. 215-243
    • Matthies, M.1    Behrendt, H.2
  • 28
    • 38249037573 scopus 로고
    • Estimation of soil-water extraction patterns by roots
    • doi:10.1016/0378-3774(87)90002-3
    • Novak, V. 1987. Estimation of soil-water extraction patterns by roots. Agric. Water Manage. 12:271-278. doi:10.1016/0378-3774(87)90002-3
    • (1987) Agric. Water Manage. , vol.12 , pp. 271-278
    • Novak, V.1
  • 29
    • 1842788236 scopus 로고    scopus 로고
    • A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow
    • doi:10.1016/j.advwatres.2004.02.016
    • Panday, S., and P.S. Huyakorn. 2004. A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv. Water Resour. 27:361-382. doi:10.1016/j.advwatres.2004.02.016
    • (2004) Adv. Water Resour. , vol.27 , pp. 361-382
    • Panday, S.1    Huyakorn, P.S.2
  • 30
    • 0002504465 scopus 로고    scopus 로고
    • The use of vascular plants as "field" biomonitors
    • W. Wang et al. (ed.), Lewis Publ., Boca Raton, FL
    • Powell, R.L. 1997. The use of vascular plants as "field" biomonitors. p. 335-365. In W. Wang et al. (ed.) Plants for environmental studies. Lewis Publ., Boca Raton, FL.
    • (1997) Plants for Environmental Studies , pp. 335-365
    • Powell, R.L.1
  • 31
    • 34247647193 scopus 로고
    • Capillary conduction of liquids through porous mediums
    • doi:10.1063/1.1745010
    • Richards, L.A. 1931. Capillary conduction of liquids through porous mediums. Physics 1:318-333. doi:10.1063/1.1745010
    • (1931) Physics , vol.1 , pp. 318-333
    • Richards, L.A.1
  • 32
    • 0002522935 scopus 로고
    • Partitioning and transport of organic chemicals between the atmospheric environment and leaves
    • S. Trapp and J.C. McFarlane (ed.), Lewis Publ., Boca Raton
    • Riederer, M. 1995. Partitioning and transport of organic chemicals between the atmospheric environment and leaves. p. 153-190. In S. Trapp and J.C. McFarlane (ed.) Plant contamination: Modeling and simulation of organic chemical processes. Lewis Publ., Boca Raton, FL.
    • (1995) Plant Contamination: Modeling and Simulation of Organic Chemical Processes , pp. 153-190
    • Riederer, M.1
  • 33
    • 0032126396 scopus 로고    scopus 로고
    • Modelling the influence of terrestrial vegetation on the environmental fate of xenobiotics
    • doi:10.1016/S0045-6535(98)80002-7
    • Severinsen, M., and T. Jager. 1998. Modelling the influence of terrestrial vegetation on the environmental fate of xenobiotics. Chemosphere 37:41-62. doi:10.1016/S0045-6535(98)80002-7
    • (1998) Chemosphere , vol.37 , pp. 41-62
    • Severinsen, M.1    Jager, T.2
  • 34
    • 44949208459 scopus 로고    scopus 로고
    • Vadose zone modeling: Introduction and importance
    • doi:10.2136/vzj2008.0012
    • Šimůnek, J., and S.A. Bradford. 2008. Vadose zone modeling: Introduction and importance. Vadose Zone J. 7:581-586. doi:10.2136/vzj2008.0012
    • (2008) Vadose Zone J , vol.7 , pp. 581-586
    • Šimůnek, J.1    Bradford, S.A.2
  • 38
    • 0037232380 scopus 로고    scopus 로고
    • CropSyst, a cropping systems simulation model
    • doi:10.1016/S1161-0301(02)00109-0
    • Stöckle, C.O., M. Donatelli, and R. Nelson. 2003. CropSyst, a cropping systems simulation model. Eur. J. Agron. 18:289-307. doi:10.1016/S1161-0301(02)00109-0
    • (2003) Eur. J. Agron. , vol.18 , pp. 289-307
    • Stöckle, C.O.1    Donatelli, M.2    Nelson, R.3
  • 39
    • 0002214373 scopus 로고
    • Model for uptake of xenobiotics into plants
    • S. Trapp and J.C. McFarland (ed.), Lewis Publ., Boca Raton, FL
    • Trapp, S. 1995. Model for uptake of xenobiotics into plants. p. 107-151. In S. Trapp and J.C. McFarland (ed.) Plant contamination: Modeling and simulate on of organic chemical processes. Lewis Publ., Boca Raton, FL.
    • (1995) Plant Contamination: Modeling and Simulate on of Organic Chemical Processes , pp. 107-151
    • Trapp, S.1
  • 40
    • 0842264133 scopus 로고    scopus 로고
    • Plant uptake and transport models for neutral and ionic chemicals
    • doi:10.1065/espr2003.08.169
    • Trapp, S. 2004. Plant uptake and transport models for neutral and ionic chemicals. Environ. Sci. Pollut. Res. 11:33-39. doi:10.1065/espr2003.08.169
    • (2004) Environ. Sci. Pollut. Res. , vol.11 , pp. 33-39
    • Trapp, S.1
  • 41
    • 34248157751 scopus 로고    scopus 로고
    • Fruit tree model for uptake of organic compounds from soil and air
    • doi:10.1080/10629360701303693
    • Trapp, S. 2007. Fruit tree model for uptake of organic compounds from soil and air. SAR QSAR Environ. Res. 18:367-387. doi:10.1080/10629360701303693
    • (2007) SAR QSAR Environ. Res. , vol.18 , pp. 367-387
    • Trapp, S.1
  • 42
    • 0028991570 scopus 로고
    • Generic one-compartment model for uptake of organic-chemicals by foliar vegetation
    • doi:10.1021/es00009a027
    • Trapp, S., and M. Matthies. 1995. Generic one-compartment model for uptake of organic-chemicals by foliar vegetation. Environ. Sci. Technol. 29:2333-2338. doi:10.1021/es00009a027
    • (1995) Environ. Sci. Technol. , vol.29 , pp. 2333-2338
    • Trapp, S.1    Matthies, M.2
  • 44
    • 66249099543 scopus 로고    scopus 로고
    • Addressing temporal variability when modeling bioaccumulation in plants
    • doi:10.1021/es900265j
    • Undeman, E., G. Czub, and M.S. McLachlan. 2009. Addressing temporal variability when modeling bioaccumulation in plants. Environ. Sci. Technol. 43:3751-3756. doi:10.1021/es900265j
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3751-3756
    • Undeman, E.1    Czub, G.2    McLachlan, M.S.3
  • 45
    • 0034640964 scopus 로고    scopus 로고
    • Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation
    • doi:10.1016/S0022-1694(00)00227-4
    • van Dam, J.C., and R.A. Feddes. 2000. Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. J. Hydrol. 233:72-85. doi:10.1016/S0022-1694(00)00227-4
    • (2000) J. Hydrol. , vol.233 , pp. 72-85
    • van Dam, J.C.1    Feddes, R.A.2
  • 46
    • 44949236124 scopus 로고    scopus 로고
    • Advances of modeling water flow in variably saturated soils with SWAP
    • doi:10.2136/vzj2007.0060
    • van Dam, J.C., P. Groenendijk, R.F.A. Hendriks, and J.G. Kroes. 2008. Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J. 7:640-653. doi:10.2136/vzj2007.0060
    • (2008) Vadose Zone J , vol.7 , pp. 640-653
    • van Dam, J.C.1    Groenendijk, P.2    Hendriks, R.F.A.3    Kroes, J.G.4
  • 47
    • 0035796538 scopus 로고    scopus 로고
    • Modelling rainfall interception by vegetation of variable density using an adapted analytical model: 1
    • doi:10.1016/S0022-1694(01)00392-4
    • van Dijk, A., and L.A. Bruijnzeel. 2001a. Modelling rainfall interception by vegetation of variable density using an adapted analytical model: 1. Model description. J. Hydrol. 247:230-238. doi:10.1016/S0022-1694(01)00392-4
    • (2001) Model Description. J. Hydrol. , vol.247 , pp. 230-238
    • van Dijk, A.1    Bruijnzeel, L.A.2
  • 48
    • 0035796527 scopus 로고    scopus 로고
    • Modelling rainfall interception by vegetation of variable density using an adapted analytical model: 2. Model validation for a tropical upland mixed cropping system
    • doi:10.1016/S0022-1694(01)00393-6
    • van Dijk, A., and L.A. Bruijnzeel. 2001b. Modelling rainfall interception by vegetation of variable density using an adapted analytical model: 2. Model validation for a tropical upland mixed cropping system. J. Hydrol. 247:239-262. doi:10.1016/S0022-1694(01)00393-6
    • (2001) J. Hydrol. , vol.247 , pp. 239-262
    • van Dijk, A.1    Bruijnzeel, L.A.2
  • 49
    • 0019057216 scopus 로고
    • A closed form equation for predicting the hydraulic conductivity of unsaturated soils
    • van Genuchten, M.Th. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898.
    • (1980) Soil Sci. Soc. Am. J. , vol.44 , pp. 892-898
    • van Genuchten, M.T.1
  • 51
    • 36448937796 scopus 로고    scopus 로고
    • Physically based coupled model for simulate ng 1D surface-2D subsurface flow and plant water uptake in irrigation furrows: II. Model test and evaluation
    • doi:10.1061/(ASCE)0733-9437(2007)133:6(548)
    • Wöhling, T., and J.C. Mailhol. 2007. Physically based coupled model for simulate ng 1D surface-2D subsurface flow and plant water uptake in irrigation furrows: II. Model test and evaluation. J. Irrig. Drain. Eng. 133:548-558. doi:10.1061/(ASCE)0733-9437(2007)133:6(548)
    • (2007) J. Irrig. Drain. Eng. , vol.133 , pp. 548-558
    • Wöhling, T.1    Mailhol, J.C.2
  • 52
    • 36448938664 scopus 로고    scopus 로고
    • Physically based coupled model for simulating 1D surface-2D subsurface flow and plant water uptake in irrigate on furrows: I. Model development
    • doi:10.1061/(ASCE)0733-9437(2007)133:6(538)
    • Wöhling, T., and G.H. Schmitz. 2007. Physically based coupled model for simulating 1D surface-2D subsurface flow and plant water uptake in irrigate on furrows: I. Model development. J. Irrig. Drain. Eng. 133:538-547. doi:10.1061/(ASCE)0733-9437(2007)133:6(538)
    • (2007) J. Irrig. Drain. Eng. , vol.133 , pp. 538-547
    • Wöhling, T.1    Schmitz, G.H.2
  • 53
    • 69249129132 scopus 로고    scopus 로고
    • Soil moisture dynamics modeling considering the root compensation mechanism for water uptake by plants
    • doi:10.1061/(ASCE)HE.1943-5584.0000066
    • Yadav, B.K., S. Mathur, and M.A. Siebel. 2009a. Soil moisture dynamics modeling considering the root compensation mechanism for water uptake by plants. J. Hydrol. Eng. 14:913-922. doi:10.1061/(ASCE)HE.1943-5584.0000066
    • (2009) J. Hydrol. Eng. , vol.14 , pp. 913-922
    • Yadav, B.K.1    Mathur, S.2    Siebel, M.A.3
  • 54
    • 66349091877 scopus 로고    scopus 로고
    • Soil moisture flow modeling with water uptake by plants (wheat) under varying soil and moisture conditions
    • doi:10.1061/(ASCE)IR.1943-4774.0000068
    • Yadav, B.K., S. Mathur, and M.A. Siebel. 2009b. Soil moisture flow modeling with water uptake by plants (wheat) under varying soil and moisture conditions. J. Irrig. Drain. Eng. 135:375-381. doi:10.1061/(ASCE)IR.1943-4774.0000068
    • (2009) J. Irrig. Drain. Eng. , vol.135 , pp. 375-381
    • Yadav, B.K.1    Mathur, S.2    Siebel, M.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.