메뉴 건너뛰기




Volumn 65, Issue 3, 2011, Pages 301-310

Structured output SVM for remote sensing image classification

Author keywords

Kernel methods; Land use classification; Structured output learning; Support vector machines

Indexed keywords

ACTIVE FIELD; CLASSIFICATION METHODS; HIERARCHICAL TREE; INPUT VALUES; KERNEL CLASSIFIERS; KERNEL FUNCTION; KERNEL METHODS; LAND USE CLASSIFICATION; LOSS FUNCTIONS; MISCLASSIFICATIONS; MULTISPECTRAL IMAGES; QUICKBIRD; REAL-LIFE PROBLEMS; REMOTE SENSING DATA; REMOTE SENSING IMAGE CLASSIFICATION; SATELLITE SENSORS; SPACE STRUCTURE; STRUCTURED OUTPUT LEARNING; SUPPORT VECTOR; URBAN AREAS; VERY HIGH SPATIAL RESOLUTIONS; VISUAL INSPECTION;

EID: 81855227139     PISSN: 19398018     EISSN: 19398115     Source Type: Journal    
DOI: 10.1007/s11265-010-0483-8     Document Type: Article
Times cited : (25)

References (22)
  • 1
    • 77950950348 scopus 로고    scopus 로고
    • Support vector learning for interdependent and structured output spaces
    • G. Bakir T. Hofmann B. Schölkopf A.J. Smola S. Vishwanathan (eds). MIT press Cambridge
    • Altun, Y., Hofmann, T., & Tsochantaridis, I. (2007). Support vector learning for interdependent and structured output spaces. In G. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, & S. Vishwanathan (Eds.), Predicting structured data (pp. 85-105). Cambridge: MIT press.
    • (2007) Predicting Structured Data , pp. 85-105
    • Altun, Y.1    Hofmann, T.2    Tsochantaridis, I.3
  • 4
    • 56749161572 scopus 로고    scopus 로고
    • Learning to localize objects with structured output regression
    • D. Forsyth P. Torr A. Zisserman (eds). Springer Heidelberg. 10.1007/978-3-540-88682-2-2
    • Blaschko, M., & Lampert, C. (2008). Learning to localize objects with structured output regression. In D. Forsyth, P. Torr, & A. Zisserman (Eds.), Computer vision: ECCV 2008 (pp. 2-15). Heidelberg: Springer.
    • (2008) Computer Vision: ECCV 2008 , pp. 2-15
    • Blaschko, M.1    Lampert, C.2
  • 5
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G Camps-Valls L Bruzzone 2005 Kernel-based methods for hyperspectral image classification IEEE Transactions on Geoscience and Remote Sensing 43 1351 1362 10.1109/TGRS.2005.846154 (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 7
    • 44049084715 scopus 로고    scopus 로고
    • Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection
    • DOI 10.1109/TGRS.2008.916201, 4509590
    • G Camps-Valls L Gómez-Chova J Muñoz-Marí JL Rojo-Álvarez M Martínez-Ramón 2008 Kernel-based framework for multi-temporal and multi-source remote sensing data classification and change detection IEEE Transactions on Geoscience and Remote Sensing 46 6 1822 1835 10.1109/TGRS.2008.916201 (Pubitemid 351711220)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.6 , pp. 1822-1835
    • Camps-Valls, G.1    Gomez-Chova, L.2    Munoz-Mari, J.3    Rojo-Alvarez, J.L.4    Martinez-Ramon, M.5
  • 9
    • 44049095033 scopus 로고    scopus 로고
    • Bayesian data fusion for adaptable image pansharpening
    • DOI 10.1109/TGRS.2008.917131, 4505280
    • D Fasbender J Radoux P Bogaert 2008 Bayesian data fusion for adaptable image pansharpening IEEE Transactions on Geoscience and Remote Sensing 46 6 1847 1857 10.1109/TGRS.2008.917131 (Pubitemid 351711222)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.6 , pp. 1847-1857
    • Fasbender, D.1    Radoux, J.2    Bogaert, P.3
  • 10
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • GM Foody 2004 Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy Photogrammetric Engineering and Remote Sensing 50 5 627 633 (Pubitemid 39081774)
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 12
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • 10.1109/TIT.1968.1054102
    • GF Hughes 1968 On the mean accuracy of statistical pattern recognition IEEE Transactions on Information Theory IT-14 1 55 63 10.1109/TIT.1968.1054102
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 13
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • 10.1007/s10994-009-5108-8
    • T Joachims T Finley CNJ Yu 2009 Cutting-plane training of structural SVMs Machine Learning 77 27 59 10.1007/s10994-009-5108-8
    • (2009) Machine Learning , vol.77 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.N.J.3
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • 10.1109/TGRS.2004.831865
    • F Melgani L Bruzzone 2004 Classification of hyperspectral remote sensing images with support vector machines IEEE Transactions on Geoscience and Remote Sensing 42 8 1778 1790 10.1109/TGRS.2004.831865
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 21
    • 65049084094 scopus 로고    scopus 로고
    • Semi-supervised remote sensing image classification with cluster kernels
    • 10.1109/LGRS.2008.2010275
    • D Tuia G Camps-Valls 2009 Semi-supervised remote sensing image classification with cluster kernels IEEE Geoscience and Remote Sensing Letter 6 1 224 228 10.1109/LGRS.2008.2010275
    • (2009) IEEE Geoscience and Remote Sensing Letter , vol.6 , Issue.1 , pp. 224-228
    • Tuia, D.1    Camps-Valls, G.2
  • 22
    • 77956547273 scopus 로고    scopus 로고
    • Transductive support vector machines for structured variables
    • Zien, A., Brefeld, U., & Scheffer, T. (2007). Transductive support vector machines for structured variables. In Intl. conf. mach. learn.
    • (2007) Intl. Conf. Mach. Learn
    • Zien, A.1    Brefeld, U.2    Scheffer, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.