메뉴 건너뛰기




Volumn 15, Issue 2, 2011, Pages 223-231

Improving short term load forecasting using double seasonal arima model

Author keywords

Double SARIMA and forecast accuracy; Load forecasting; SARIMA

Indexed keywords


EID: 81755169803     PISSN: 18184952     EISSN: 19916426     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (18)

References (19)
  • 2
    • 0035480509 scopus 로고    scopus 로고
    • A flexible long term load forecasting approach based on new dynamic simulation theory-GSIM
    • Jia, N.X., R. Yokoyama, Y.C. Zhou and Z.Y. Gau, 2001. A flexible long term load forecasting approach based on new dynamic simulation theory-GSIM. Electrical power and Energy Systems, 23: 549-555
    • (2001) Electrical Power and Energy Systems , vol.23 , pp. 549-555
    • Jia, N.X.1    Yokoyama, R.2    Zhou, Y.C.3    Gau, Z.Y.4
  • 3
    • 74249107853 scopus 로고    scopus 로고
    • Mid-term hourly electricity forecasting based on a multi-rate approach
    • Pedregal, D.J. and J.R. Trapero, 2010. Mid-term hourly electricity forecasting based on a multi-rate approach. Energy Conversion and Manage., 51: 105-111.
    • (2010) Energy Conversion and Manage , vol.51 , pp. 105-111
    • Pedregal, D.J.1    Trapero, J.R.2
  • 4
    • 31344476313 scopus 로고    scopus 로고
    • Medium term system load forecasting with a dynamic artificial neural network model
    • Ghiassi, M., D.K. Zimbra and H. Saidane, 2006. Medium term system load forecasting with a dynamic artificial neural network model. Electric Power System Res., 76: 302-316
    • (2006) Electric Power System Res , vol.76 , pp. 302-316
    • Ghiassi, M.1    Zimbra, D.K.2    Saidane, H.3
  • 5
    • 0033116849 scopus 로고    scopus 로고
    • Artificial neural networks as applied to long-term demand forecasting
    • Al-Saba, T. and I. El-Amin, 1999. Artificial neural networks as applied to long-term demand forecasting. Artificial Intelligence in Engineering, 13: 189-197.
    • (1999) Artificial Intelligence In Engineering , vol.13 , pp. 189-197
    • Al-Saba, T.1    El-Amin, I.2
  • 6
    • 0032494994 scopus 로고    scopus 로고
    • Artificial neural networks for short-term energy forecasting: Accuracy and economic value
    • Hobbs, B.F., U. Helman, S. Jitprapaikulsarn, S. Konda and D. Maratukulam, 1998. Artificial neural networks for short-term energy forecasting: Accuracy and economic value. Neurocomputing, 23: 71-84.
    • (1998) Neurocomputing , vol.23 , pp. 71-84
    • Hobbs, B.F.1    Helman, U.2    Jitprapaikulsarn, S.3    Konda, S.4    Maratukulam, D.5
  • 8
    • 38649123300 scopus 로고    scopus 로고
    • Short-term forecasting of Jordonian electricity demand using particle swarm optimization
    • El-Telbany, M. and F. El-Karmi, 2007. Short-term forecasting of Jordonian electricity demand using particle swarm optimization, Electric Power Systems Res., 78: 425-433.
    • (2007) Electric Power Systems Res , vol.78 , pp. 425-433
    • El-Telbany, M.1    El-Karmi, F.2
  • 9
    • 47549109258 scopus 로고    scopus 로고
    • Short-tem prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area
    • Beccali, M., M. Cellura, V. Lo Brano and A. Marvuglia, 2007. Short-tem prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area. Renewable and Sustainable Energy Reviews, 12: 2040-2065.
    • (2007) Renewable and Sustainable Energy Reviews , vol.12 , pp. 2040-2065
    • Beccali, M.1    Cellura, M.2    lo Brano, V.3    Marvuglia, A.4
  • 10
    • 81755186194 scopus 로고    scopus 로고
    • SARIMA model for forecasting Malaysian electricity generated
    • Ismail, Z. and K.A. Mahpol, 2005. SARIMA model for forecasting Malaysian electricity generated. Matematika, 21(2): 143-152.
    • (2005) Matematika , vol.21 , Issue.2 , pp. 143-152
    • Ismail, Z.1    Mahpol, K.A.2
  • 14
  • 15
    • 55349121825 scopus 로고    scopus 로고
    • Forecasting the electricity load from one day to one week ahead for the Spanish system operator
    • Cancelo, J.R., A. Espasa and R. Grafe, 2008. Forecasting the electricity load from one day to one week ahead for the Spanish system operator. International J. Forecasting, 24: 588-602.
    • (2008) International J. Forecasting , vol.24 , pp. 588-602
    • Cancelo, J.R.1    Espasa, A.2    Grafe, R.3
  • 16
    • 0002715074 scopus 로고    scopus 로고
    • Forecasting the short-term demand for electricity. Do neural networks stand a better chance?
    • Darbellay G.A. and M. Slama, 2000. Forecasting the short-term demand for electricity. Do neural networks stand a better chance? International J. Forecasting, 16: 71-83.
    • (2000) International J. Forecasting , vol.16 , pp. 71-83
    • Darbellay, G.A.1    Slama, M.2
  • 17
    • 55349093262 scopus 로고    scopus 로고
    • An evaluation of methods for very short-term load forecasting using minute-by-minute British data
    • Taylor, J.W., 2008. An evaluation of methods for very short-term load forecasting using minute-by-minute British data. International J. Forecasting, 24: 645-658.
    • (2008) International J. Forecasting , vol.24 , pp. 645-658
    • Taylor, J.W.1
  • 18
    • 31744444183 scopus 로고    scopus 로고
    • A comparison of univariate methods for forecasting electricity demand up to a day a head
    • Taylor, J.W., L.M. De Menezes and P.E. McSharry, 2006. A comparison of univariate methods for forecasting electricity demand up to a day a head. International J. Forecasting. 22: 1-16.
    • (2006) International J. Forecasting , vol.22 , pp. 1-16
    • Taylor, J.W.1    de Menezes, L.M.2    McSharry, P.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.