-
5
-
-
79953201518
-
MetiTarski: An automatic theorem prover for real-valued special functions
-
B. Akbarpour and L. C. Paulson. MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions. J. Autom. Reason., 44(3), 2010.
-
(2010)
J. Autom. Reason.
, vol.44
, Issue.3
-
-
Akbarpour, B.1
Paulson, L.C.2
-
6
-
-
81455150555
-
Multi-Prover verification of floating-point programs
-
A. Ayad and C. Marché. Multi-Prover Verification of Floating-Point Programs. In IJCAR, 2010.
-
(2010)
IJCAR
-
-
Ayad, A.1
Marché, C.2
-
7
-
-
79956118695
-
Slam2: Static driver verification with under 4% false alarms
-
T. Ball, E. Bounimova, R. Kumar, and V. Levin. Slam2: Static driver verification with under 4% false alarms. In FMCAD, pages 35-42, 2010.
-
(2010)
FMCAD
, pp. 35-42
-
-
Ball, T.1
Bounimova, E.2
Kumar, R.3
Levin, V.4
-
8
-
-
77954871628
-
Combining coq and gappa for certifying floating-point programs
-
S. Boldo, J.-C. Filliâtre, and G. Melquiond. Combining Coq and Gappa for Certifying Floating-Point Programs. In CICM, 2009.
-
(2009)
CICM
-
-
Boldo, S.1
Filliâtre, J.-C.2
Melquiond, G.3
-
11
-
-
76549105713
-
Mixed abstractions for floating-point arithmetic
-
A. Brillout, D. Kroening, and T. Wahl. Mixed Abstractions for Floating-Point Arithmetic. In FMCAD, 2009.
-
(2009)
FMCAD
-
-
Brillout, A.1
Kroening, D.2
Wahl, T.3
-
13
-
-
77951936080
-
A sound floating-point polyhedra abstract domain
-
L. Chen, A. Miné, J. Wang, and P. Cousot. A Sound Floating-Point Polyhedra Abstract Domain. In APLAS, 2008.
-
(2008)
APLAS
-
-
Chen, L.1
Miné, A.2
Wang, J.3
Cousot, P.4
-
14
-
-
33749327394
-
The ASTRÉE analyser
-
P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE Analyser. In ESOP, 2005.
-
(2005)
ESOP
-
-
Cousot, P.1
Cousot, R.2
Feret, J.3
Mauborgne, L.4
Miné, A.5
Monniaux, D.6
Rival, X.7
-
19
-
-
57349184127
-
Sound, complete and scalable path-sensitive analysis
-
Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable path-sensitive analysis. In PLDI, 2008.
-
(2008)
PLDI
-
-
Dillig, I.1
Dillig, T.2
Aiken, A.3
-
20
-
-
23844523434
-
Interval mathematical library based on Chebyshev and Taylor series expansion
-
A. G. Ershov and T. P. Kashevarova. Interval Mathematical Library Based on Chebyshev and Taylor Series Expansion. Reliable Computing, 11, 2005.
-
(2005)
Reliable Computing
, vol.11
-
-
Ershov, A.G.1
Kashevarova, T.P.2
-
21
-
-
0141607895
-
Floating-point error analysis based on affine arithmetic
-
C.F. Fang, Tsuhan C., and R.A. Rutenbar. Floating-point error analysis based on affine arithmetic. In ICASSP, 2003.
-
(2003)
ICASSP
-
-
Fang, C.F.1
Tsuhan, C.2
Rutenbar, R.A.3
-
22
-
-
34247362881
-
Effective typestate verification in the presence of aliasing
-
Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanual Geay. Effective typestate verification in the presence of aliasing. In ISSTA'06, 2006.
-
(2006)
ISSTA'06
-
-
Fink, S.1
Yahav, E.2
Dor, N.3
Ramalingam, G.4
Geay, E.5
-
23
-
-
18644365243
-
Unifying bit-width optimisation for fixed-point and floating-point designs
-
Proceedings - 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2004
-
A.A. Gaffar, O. Mencer, and W. Luk. Unifying bit-width optimisation for fixed-point and floating-point designs. In Field-Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on, pages 79 -88, april 2004. (Pubitemid 40661984)
-
(2004)
Proceedings - 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2004
, pp. 79-88
-
-
Gaffar, A.A.1
Mencer, O.2
Luk, W.3
Cheung, P.Y.K.4
-
24
-
-
0026122066
-
What every computer scientist should know about floating-point arithmetic
-
D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv., 23(1), 1991.
-
(1991)
ACM Comput. Surv.
, vol.23
, Issue.1
-
-
Goldberg, D.1
-
25
-
-
0003518498
-
-
Addison-Wesley
-
J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The 3rd Edition. Addison-Wesley, 2005.
-
(2005)
Java(TM) Language Specification, the 3rd Edition
-
-
Gosling, J.1
Joy, B.2
Steele, G.3
Bracha, G.4
-
26
-
-
81455138606
-
Static analysis of finite precision computations
-
E. Goubault and S. Putot. Static Analysis of Finite Precision Computations. In VMCAI, 2011.
-
(2011)
VMCAI
-
-
Goubault, E.1
Putot, S.2
-
27
-
-
3042658608
-
Refinement of mixed-signal systems with affine arithmetic
-
Ch. Grimm, W. Heupke, and K. Waldschmidt. Refinement of Mixed-Signal Systems with Affine Arithmetic. In DATE, 2004.
-
(2004)
DATE
-
-
Grimm, Ch.1
Heupke, W.2
Waldschmidt, K.3
-
28
-
-
0041967527
-
Formal verification at Intel
-
J. Harrison. Formal Verification at Intel. In LICS, 2003.
-
(2003)
LICS
-
-
Harrison, J.1
-
30
-
-
77957796073
-
Numerical stability analysis of floating-point computations using software model checking
-
F. Ivancic, M. K. Ganai, S. Sankaranarayanan, and A. Gupta. Numerical stability analysis of floating-point computations using software model checking. In MEMOCODE, 2010.
-
(2010)
MEMOCODE
-
-
Ivancic, F.1
Ganai, M.K.2
Sankaranarayanan, S.3
Gupta, A.4
-
31
-
-
77957596573
-
Apron: A library of numerical abstract domains for static analysis
-
B. Jeannet and A. Miné. Apron: A Library of Numerical Abstract Domains for Static Analysis. In CAV, 2009.
-
(2009)
CAV
-
-
Jeannet, B.1
Miné, A.2
-
32
-
-
44349175990
-
CADNA: A library for estimating round-off error propagation
-
F. Jézéquel and J.-M. Chesneaux. CADNA: a library for estimating round-off error propagation. Computer Physics Communications, 178(12), 2008.
-
(2008)
Computer Physics Communications
, vol.178
, Issue.12
-
-
Jézéquel, F.1
Chesneaux, J.-M.2
-
35
-
-
70350068407
-
Finite precision bit-width allocation using SAT-modulo theory
-
A.B. Kinsman and N. Nicolici. Finite Precision bit-width allocation using SAT-Modulo Theory. In DATE, 2009.
-
(2009)
DATE
-
-
Kinsman, A.B.1
Nicolici, N.2
-
37
-
-
33947308127
-
Modular pluggable analyses for data structure consistency
-
December
-
Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard. Modular pluggable analyses for data structure consistency. IEEE Transactions on Software Engineering, 32(12), December 2006.
-
(2006)
IEEE Transactions on Software Engineering
, vol.32
, Issue.12
-
-
Kuncak, V.1
Lam, P.2
Zee, K.3
Rinard, M.4
-
38
-
-
33748288306
-
Accuracy-guaranteed bit-width optimization
-
D.-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides. Accuracy-Guaranteed Bit-Width Optimization. IEEE Trans. on CAD of Integrated Circuits and Systems, 25(10), 2006.
-
(2006)
IEEE Trans. on CAD of Integrated Circuits and Systems
, vol.25
, Issue.10
-
-
Lee, D.-U.1
Gaffar, A.A.2
Cheung, R.C.C.3
Mencer, O.4
Luk, W.5
Constantinides, G.A.6
-
39
-
-
81455138599
-
Verified squared: Does critical software deserve verified tools?
-
X. Leroy. Verified squared: does critical software deserve verified tools? In POPL, 2011.
-
(2011)
POPL
-
-
Leroy, X.1
-
40
-
-
77954008822
-
Towards program optimization through automated analysis of numerical precision
-
M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P. Nolan. Towards program optimization through automated analysis of numerical precision. In CGO, 2010.
-
(2010)
CGO
-
-
Linderman, M.D.1
Ho, M.2
Dill, D.L.3
Meng, T.H.4
Nolan, G.P.5
-
44
-
-
81455156101
-
An overview of semantics for the validation of numerical programs
-
M. Martel. An overview of semantics for the validation of numerical programs. In VMCAI, 2005.
-
(2005)
VMCAI
-
-
Martel, M.1
-
45
-
-
0036647957
-
Comparison of interval methods for plotting algebraic curves
-
R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and G. Wang. Comparison of interval methods for plotting algebraic curves. Comput. Aided Geom. Des., 19(7), 2002.
-
(2002)
Comput. Aided Geom. Des.
, vol.19
, Issue.7
-
-
Martin, R.1
Shou, H.2
Voiculescu, I.3
Bowyer, A.4
Wang, G.5
-
46
-
-
44249093716
-
The pitfalls of verifying floating-point computations
-
D. Monniaux. The pitfalls of verifying floating-point computations. ACM Trans. Program. Lang. Syst., 30(3), 2008.
-
(2008)
ACM Trans. Program. Lang. Syst.
, vol.30
, Issue.3
-
-
Monniaux, D.1
-
47
-
-
33747097418
-
A mechanically checked proof of the AMD5 K86 floating point division program
-
J. S. Moore, T.W. Lynch, and M. Kaufmann. A Mechanically Checked Proof of the AMD5 K86 Floating Point Division Program. IEEE Trans. Computers, 47(9), 1998.
-
(1998)
IEEE Trans. Computers
, vol.47
, Issue.9
-
-
Moore, J.S.1
Lynch, T.W.2
Kaufmann, M.3
-
53
-
-
78650151869
-
Lightweight modular staging: A pragmatic approach to runtime code generation and compiled DSLs
-
T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs. In GPCE, 2010.
-
(2010)
GPCE
-
-
Rompf, T.1
Odersky, M.2
-
55
-
-
0032649111
-
A mechanically checked proof of correctness of the AMD K5 floating point square root microcode
-
D. M. Russinoff. A Mechanically Checked Proof of Correctness of the AMD K5 Floating Point Square Root Microcode. Formal Methods in System Design, 1999.
-
(1999)
Formal Methods in System Design
-
-
Russinoff, D.M.1
-
56
-
-
0042635701
-
Toward efficient static analysis of finite-precision effects in DSP applications via affine arithmetic modeling
-
R. A. Rutenbar, C. F. Fang, M. Püschel, and T. Chen. Toward efficient static analysis of finite-precision effects in DSP applications via affine arithmetic modeling. In DAC, 2003.
-
(2003)
DAC
-
-
Rutenbar, R.A.1
Fang, C.F.2
Püschel, M.3
Chen, T.4
-
58
-
-
31244434123
-
Affine arithmetic in matrix form for polynomial evaluation and algebraic curve drawing
-
H. Shou, R.R. Martin, I. Voiculescu, A. Bowyer, and G. Wang. Affine Arithmetic in Matrix Form for Polynomial Evaluation and Algebraic Curve Drawing. Progress in Natural Science, 12, 2002.
-
(2002)
Progress in Natural Science
, vol.12
-
-
Shou, H.1
Martin, R.R.2
Voiculescu, I.3
Bowyer, A.4
Wang, G.5
-
61
-
-
81455129275
-
-
J. White. Fbench.java. http://code.google.com/p/geo-reminder/source/ browse/trunk/benchmark-android/src/com/benchmark/suite/Fbench.java?r=108, 2005.
-
(2005)
Fbench.java
-
-
White, J.1
-
62
-
-
77957986930
-
Tradeoff between approximation accuracy and complexity for range analysis using affine arithmetic
-
L. Zhang, Y. Zhang, and W. Zhou. Tradeoff between Approximation Accuracy and Complexity for Range Analysis using Affine Arithmetic. Journal of Signal Processing Systems, 61, 2010.
-
(2010)
Journal of Signal Processing Systems
, vol.61
-
-
Zhang, L.1
Zhang, Y.2
Zhou, W.3
|