메뉴 건너뛰기




Volumn , Issue , 2011, Pages 325-344

Trustworthy numerical computation in scala

Author keywords

Algorithms; Languages; Verification

Indexed keywords

AFFINE ARITHMETIC; ARITHMETIC COMPUTATIONS; COMPUTATIONAL TASK; DEDICATED HARDWARE; DOUBLE PRECISION; FLOATING POINTS; IDEAL VALUES; INTERVAL ARITHMETIC; LINEAR APPROXIMATIONS; MATHEMATICAL OPERATIONS; MENTAL MODEL; MODERN ARCHITECTURES; NUMERICAL COMPUTATIONS; NUMERICAL DATA; REAL NUMBER; TRIGONOMETRIC FUNCTIONS; UPPER BOUND;

EID: 81455141864     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2048066.2048094     Document Type: Conference Paper
Times cited : (37)

References (62)
  • 5
    • 79953201518 scopus 로고    scopus 로고
    • MetiTarski: An automatic theorem prover for real-valued special functions
    • B. Akbarpour and L. C. Paulson. MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions. J. Autom. Reason., 44(3), 2010.
    • (2010) J. Autom. Reason. , vol.44 , Issue.3
    • Akbarpour, B.1    Paulson, L.C.2
  • 6
    • 81455150555 scopus 로고    scopus 로고
    • Multi-Prover verification of floating-point programs
    • A. Ayad and C. Marché. Multi-Prover Verification of Floating-Point Programs. In IJCAR, 2010.
    • (2010) IJCAR
    • Ayad, A.1    Marché, C.2
  • 7
    • 79956118695 scopus 로고    scopus 로고
    • Slam2: Static driver verification with under 4% false alarms
    • T. Ball, E. Bounimova, R. Kumar, and V. Levin. Slam2: Static driver verification with under 4% false alarms. In FMCAD, pages 35-42, 2010.
    • (2010) FMCAD , pp. 35-42
    • Ball, T.1    Bounimova, E.2    Kumar, R.3    Levin, V.4
  • 8
    • 77954871628 scopus 로고    scopus 로고
    • Combining coq and gappa for certifying floating-point programs
    • S. Boldo, J.-C. Filliâtre, and G. Melquiond. Combining Coq and Gappa for Certifying Floating-Point Programs. In CICM, 2009.
    • (2009) CICM
    • Boldo, S.1    Filliâtre, J.-C.2    Melquiond, G.3
  • 11
    • 76549105713 scopus 로고    scopus 로고
    • Mixed abstractions for floating-point arithmetic
    • A. Brillout, D. Kroening, and T. Wahl. Mixed Abstractions for Floating-Point Arithmetic. In FMCAD, 2009.
    • (2009) FMCAD
    • Brillout, A.1    Kroening, D.2    Wahl, T.3
  • 13
    • 77951936080 scopus 로고    scopus 로고
    • A sound floating-point polyhedra abstract domain
    • L. Chen, A. Miné, J. Wang, and P. Cousot. A Sound Floating-Point Polyhedra Abstract Domain. In APLAS, 2008.
    • (2008) APLAS
    • Chen, L.1    Miné, A.2    Wang, J.3    Cousot, P.4
  • 19
    • 57349184127 scopus 로고    scopus 로고
    • Sound, complete and scalable path-sensitive analysis
    • Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable path-sensitive analysis. In PLDI, 2008.
    • (2008) PLDI
    • Dillig, I.1    Dillig, T.2    Aiken, A.3
  • 20
    • 23844523434 scopus 로고    scopus 로고
    • Interval mathematical library based on Chebyshev and Taylor series expansion
    • A. G. Ershov and T. P. Kashevarova. Interval Mathematical Library Based on Chebyshev and Taylor Series Expansion. Reliable Computing, 11, 2005.
    • (2005) Reliable Computing , vol.11
    • Ershov, A.G.1    Kashevarova, T.P.2
  • 21
    • 0141607895 scopus 로고    scopus 로고
    • Floating-point error analysis based on affine arithmetic
    • C.F. Fang, Tsuhan C., and R.A. Rutenbar. Floating-point error analysis based on affine arithmetic. In ICASSP, 2003.
    • (2003) ICASSP
    • Fang, C.F.1    Tsuhan, C.2    Rutenbar, R.A.3
  • 22
    • 34247362881 scopus 로고    scopus 로고
    • Effective typestate verification in the presence of aliasing
    • Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanual Geay. Effective typestate verification in the presence of aliasing. In ISSTA'06, 2006.
    • (2006) ISSTA'06
    • Fink, S.1    Yahav, E.2    Dor, N.3    Ramalingam, G.4    Geay, E.5
  • 24
    • 0026122066 scopus 로고
    • What every computer scientist should know about floating-point arithmetic
    • D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv., 23(1), 1991.
    • (1991) ACM Comput. Surv. , vol.23 , Issue.1
    • Goldberg, D.1
  • 26
    • 81455138606 scopus 로고    scopus 로고
    • Static analysis of finite precision computations
    • E. Goubault and S. Putot. Static Analysis of Finite Precision Computations. In VMCAI, 2011.
    • (2011) VMCAI
    • Goubault, E.1    Putot, S.2
  • 27
    • 3042658608 scopus 로고    scopus 로고
    • Refinement of mixed-signal systems with affine arithmetic
    • Ch. Grimm, W. Heupke, and K. Waldschmidt. Refinement of Mixed-Signal Systems with Affine Arithmetic. In DATE, 2004.
    • (2004) DATE
    • Grimm, Ch.1    Heupke, W.2    Waldschmidt, K.3
  • 28
    • 0041967527 scopus 로고    scopus 로고
    • Formal verification at Intel
    • J. Harrison. Formal Verification at Intel. In LICS, 2003.
    • (2003) LICS
    • Harrison, J.1
  • 30
    • 77957796073 scopus 로고    scopus 로고
    • Numerical stability analysis of floating-point computations using software model checking
    • F. Ivancic, M. K. Ganai, S. Sankaranarayanan, and A. Gupta. Numerical stability analysis of floating-point computations using software model checking. In MEMOCODE, 2010.
    • (2010) MEMOCODE
    • Ivancic, F.1    Ganai, M.K.2    Sankaranarayanan, S.3    Gupta, A.4
  • 31
    • 77957596573 scopus 로고    scopus 로고
    • Apron: A library of numerical abstract domains for static analysis
    • B. Jeannet and A. Miné. Apron: A Library of Numerical Abstract Domains for Static Analysis. In CAV, 2009.
    • (2009) CAV
    • Jeannet, B.1    Miné, A.2
  • 32
  • 35
    • 70350068407 scopus 로고    scopus 로고
    • Finite precision bit-width allocation using SAT-modulo theory
    • A.B. Kinsman and N. Nicolici. Finite Precision bit-width allocation using SAT-Modulo Theory. In DATE, 2009.
    • (2009) DATE
    • Kinsman, A.B.1    Nicolici, N.2
  • 39
    • 81455138599 scopus 로고    scopus 로고
    • Verified squared: Does critical software deserve verified tools?
    • X. Leroy. Verified squared: does critical software deserve verified tools? In POPL, 2011.
    • (2011) POPL
    • Leroy, X.1
  • 40
    • 77954008822 scopus 로고    scopus 로고
    • Towards program optimization through automated analysis of numerical precision
    • M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P. Nolan. Towards program optimization through automated analysis of numerical precision. In CGO, 2010.
    • (2010) CGO
    • Linderman, M.D.1    Ho, M.2    Dill, D.L.3    Meng, T.H.4    Nolan, G.P.5
  • 44
    • 81455156101 scopus 로고    scopus 로고
    • An overview of semantics for the validation of numerical programs
    • M. Martel. An overview of semantics for the validation of numerical programs. In VMCAI, 2005.
    • (2005) VMCAI
    • Martel, M.1
  • 46
    • 44249093716 scopus 로고    scopus 로고
    • The pitfalls of verifying floating-point computations
    • D. Monniaux. The pitfalls of verifying floating-point computations. ACM Trans. Program. Lang. Syst., 30(3), 2008.
    • (2008) ACM Trans. Program. Lang. Syst. , vol.30 , Issue.3
    • Monniaux, D.1
  • 47
    • 33747097418 scopus 로고    scopus 로고
    • A mechanically checked proof of the AMD5 K86 floating point division program
    • J. S. Moore, T.W. Lynch, and M. Kaufmann. A Mechanically Checked Proof of the AMD5 K86 Floating Point Division Program. IEEE Trans. Computers, 47(9), 1998.
    • (1998) IEEE Trans. Computers , vol.47 , Issue.9
    • Moore, J.S.1    Lynch, T.W.2    Kaufmann, M.3
  • 53
    • 78650151869 scopus 로고    scopus 로고
    • Lightweight modular staging: A pragmatic approach to runtime code generation and compiled DSLs
    • T. Rompf and M. Odersky. Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs. In GPCE, 2010.
    • (2010) GPCE
    • Rompf, T.1    Odersky, M.2
  • 55
    • 0032649111 scopus 로고    scopus 로고
    • A mechanically checked proof of correctness of the AMD K5 floating point square root microcode
    • D. M. Russinoff. A Mechanically Checked Proof of Correctness of the AMD K5 Floating Point Square Root Microcode. Formal Methods in System Design, 1999.
    • (1999) Formal Methods in System Design
    • Russinoff, D.M.1
  • 56
    • 0042635701 scopus 로고    scopus 로고
    • Toward efficient static analysis of finite-precision effects in DSP applications via affine arithmetic modeling
    • R. A. Rutenbar, C. F. Fang, M. Püschel, and T. Chen. Toward efficient static analysis of finite-precision effects in DSP applications via affine arithmetic modeling. In DAC, 2003.
    • (2003) DAC
    • Rutenbar, R.A.1    Fang, C.F.2    Püschel, M.3    Chen, T.4
  • 61
    • 81455129275 scopus 로고    scopus 로고
    • J. White. Fbench.java. http://code.google.com/p/geo-reminder/source/ browse/trunk/benchmark-android/src/com/benchmark/suite/Fbench.java?r=108, 2005.
    • (2005) Fbench.java
    • White, J.1
  • 62
    • 77957986930 scopus 로고    scopus 로고
    • Tradeoff between approximation accuracy and complexity for range analysis using affine arithmetic
    • L. Zhang, Y. Zhang, and W. Zhou. Tradeoff between Approximation Accuracy and Complexity for Range Analysis using Affine Arithmetic. Journal of Signal Processing Systems, 61, 2010.
    • (2010) Journal of Signal Processing Systems , vol.61
    • Zhang, L.1    Zhang, Y.2    Zhou, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.