메뉴 건너뛰기




Volumn 2, Issue 4, 2011, Pages 235-243

Biomedical named entity recognition using generalized expectation criteria

Author keywords

Biomedical named entity recognition; Conditional random field; General expectation; Latent Dirichlet allocation; Semi supervised learning

Indexed keywords

BIOMEDICAL NAMED ENTITY RECOGNITION; CONDITIONAL RANDOM FIELD; GENERAL EXPECTATION; LATENT DIRICHLET ALLOCATION; SEMI-SUPERVISED LEARNING;

EID: 81255185846     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-011-0022-3     Document Type: Article
Times cited : (7)

References (45)
  • 1
    • 75749095148 scopus 로고    scopus 로고
    • New challenges for biological text-mining in the next decade
    • Dai H et al (2010) New challenges for biological text-mining in the next decade. J Comput Sci Technol 25(1): 169-179.
    • (2010) J Comput Sci Technol , vol.25 , Issue.1 , pp. 169-179
    • Dai, H.1
  • 2
    • 47749122510 scopus 로고    scopus 로고
    • A survey of named entity recognition and classification
    • Nadeau D, Sekine S (2007) A survey of named entity recognition and classification. Linguisticae Investigationes 30: 3-26.
    • (2007) Linguisticae Investigationes , vol.30 , pp. 3-26
    • Nadeau, D.1    Sekine, S.2
  • 3
    • 79952312047 scopus 로고    scopus 로고
    • An efficient gene selection technique for cancer recognition based on neighborhood mutual information
    • Hu Q et al (2010) An efficient gene selection technique for cancer recognition based on neighborhood mutual information. Int J Mach Learn Cybern 1-12.
    • (2010) Int J Mach Learn Cybern , pp. 1-12
    • Hu, Q.1
  • 4
    • 79952314979 scopus 로고    scopus 로고
    • Full-class set classification using the Hungarian algorithm
    • Kuncheva LI (2010) Full-class set classification using the Hungarian algorithm. Int J Mach Learn Cybern 1(1-4): 53-61.
    • (2010) Int J Mach Learn Cybern , vol.1 , Issue.1-4 , pp. 53-61
    • Kuncheva, L.I.1
  • 5
    • 51049084462 scopus 로고    scopus 로고
    • Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge
    • Krallinger M et al (2008) Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge. Genome Biol 9(Suppl 2): 1.
    • (2008) Genome Biol , vol.9 , Issue.SUPPL. 2 , pp. 1
    • Krallinger, M.1
  • 6
    • 48449107150 scopus 로고    scopus 로고
    • BIOSMILE web search: a web application for annotating biomedical entities and relations
    • (Web Server issue)
    • Dai H et al (2008) BIOSMILE web search: a web application for annotating biomedical entities and relations. Nucl Acids Res 36(Web Server issue): W390.
    • (2008) Nucl Acids Res , vol.36
    • Dai, H.1
  • 7
    • 38349118307 scopus 로고    scopus 로고
    • Text processing through web services: calling Whatizit
    • Rebholz-Schuhmann D (2008) Text processing through web services: calling Whatizit. Bioinformatics 24(2): 296-298.
    • (2008) Bioinformatics , vol.24 , Issue.2 , pp. 296-298
    • Rebholz-Schuhmann, D.1
  • 10
    • 70349452071 scopus 로고    scopus 로고
    • Feature selection techniques for maximum entropy based biomedical named entity recognition
    • Saha SK, Sarkar S, Mitra PP (2009) Feature selection techniques for maximum entropy based biomedical named entity recognition. J Biomed Inform 42(5): 905-911.
    • (2009) J Biomed Inform , vol.42 , Issue.5 , pp. 905-911
    • Saha, S.K.1    Sarkar, S.2    Mitra, P.P.3
  • 13
    • 68749117716 scopus 로고    scopus 로고
    • Two-phase biomedical named entity recognition using CRFs
    • Li L, Zhou R, Huang D (2009) Two-phase biomedical named entity recognition using CRFs. Comput Biol Chem 33(4): 334-338.
    • (2009) Comput Biol Chem , vol.33 , Issue.4 , pp. 334-338
    • Li, L.1    Zhou, R.2    Huang, D.3
  • 15
    • 8444226721 scopus 로고    scopus 로고
    • Biomedical named entity recognition using two-phase model based on SVMs
    • Lee K et al (2004) Biomedical named entity recognition using two-phase model based on SVMs. J Biomed Inform 37(6): 436-447.
    • (2004) J Biomed Inform , vol.37 , Issue.6 , pp. 436-447
    • Lee, K.1
  • 16
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labelled and unlabelled documents using EM
    • Nigam K et al (2000) Text classification from labelled and unlabelled documents using EM. Mach Learn 103-134.
    • (2000) Mach Learn , pp. 103-134
    • Nigam, K.1
  • 19
    • 33749256006 scopus 로고    scopus 로고
    • Maximum margin semi-supervised learning for structured variables
    • Altun Y, McAllester D, Belkin M (2006) Maximum margin semi-supervised learning for structured variables. Adv Neural Inf Process Syst 18: 33-40.
    • (2006) Adv Neural Inf Process Syst , vol.18 , pp. 33-40
    • Altun, Y.1    McAllester, D.2    Belkin, M.3
  • 21
    • 79952312481 scopus 로고    scopus 로고
    • Margin-based active learning for structured predictions
    • Small K, Roth D (2010) Margin-based active learning for structured predictions. Int J Mach Learn Cybern 1(1-4): 3-25.
    • (2010) Int J Mach Learn Cybern , vol.1 , Issue.1-4 , pp. 3-25
    • Small, K.1    Roth, D.2
  • 24
    • 77949506891 scopus 로고    scopus 로고
    • Generalized expectation criteria for semi-supervised learning with weakly labeled data
    • Mann G, McCallum A (2010) Generalized expectation criteria for semi-supervised learning with weakly labeled data. J Mach Learn Res 11: 955-984.
    • (2010) J Mach Learn Res , vol.11 , pp. 955-984
    • Mann, G.1    McCallum, A.2
  • 26
  • 27
    • 0024610919 scopus 로고
    • A tutorial on Hidden Markov models and selected applications in speech recognition
    • Rabiner L (1989) A tutorial on Hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2): 257-286.
    • (1989) Proc IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 29
    • 26944481683 scopus 로고    scopus 로고
    • Conditional random fields: an introduction
    • Department of Computer and Information Science, University of Pennsylvania
    • Wallach H (2004) Conditional random fields: an introduction. Technical Report MS-CIS-04-21, Department of Computer and Information Science, University of Pennsylvania, p 50.
    • (2004) Technical Report MS-CIS-04-21 , pp. 50
    • Wallach, H.1
  • 30
    • 84859912771 scopus 로고    scopus 로고
    • Generalized expectation criteria for semi-supervised learning of conditional random fields
    • Mann, G, McCallum A (2008) Generalized expectation criteria for semi-supervised learning of conditional random fields. In: Proceeding of Association of Computational Linguistics, pp 870-878.
    • (2008) Proceeding of Association of Computational Linguistics , pp. 870-878
    • Mann, G.1    McCallum, A.2
  • 31
    • 33747134006 scopus 로고    scopus 로고
    • Active learning with feedback on features and instances
    • Raghavan H, Madani O, Jones R (2006) Active learning with feedback on features and instances. J Mach Learn Res 7: 1655-1686.
    • (2006) J Mach Learn Res , vol.7 , pp. 1655-1686
    • Raghavan, H.1    Madani, O.2    Jones, R.3
  • 32
    • 34447291383 scopus 로고    scopus 로고
    • Rich features based conditional random fields for biological named entities recognition
    • Sun C et al (2007) Rich features based conditional random fields for biological named entities recognition. Comput Biol Med 37(9): 1327-1333.
    • (2007) Comput Biol Med , vol.37 , Issue.9 , pp. 1327-1333
    • Sun, C.1
  • 33
    • 27844538955 scopus 로고    scopus 로고
    • Integrating linguistic knowledge into a conditional random field framework to identify biomedical named entities
    • Tsai T et al (2006) Integrating linguistic knowledge into a conditional random field framework to identify biomedical named entities. Expert Syst Appl 30(1): 117-128.
    • (2006) Expert Syst Appl , vol.30 , Issue.1 , pp. 117-128
    • Tsai, T.1
  • 34
    • 17244376942 scopus 로고    scopus 로고
    • Biomedical named entity recognition using conditional random fields and rich feature sets
    • Geneva, Switzerland
    • Settles B (2004) Biomedical named entity recognition using conditional random fields and rich feature sets. In: International Conference on Computational Linguistics. Geneva, Switzerland, pp 104-107.
    • (2004) International Conference on Computational Linguistics , pp. 104-107
    • Settles, B.1
  • 35
    • 33750553523 scopus 로고    scopus 로고
    • Using maximum entropy to extract biomedical named entities without dictionaries
    • Tsai T, Wu C, Hsu W (2005) Using maximum entropy to extract biomedical named entities without dictionaries. In: Proceedings of IJCNLP2005, pp 270-275.
    • (2005) Proceedings of IJCNLP2005 , pp. 270-275
    • Tsai, T.1    Wu, C.2    Hsu, W.3
  • 36
    • 84989525001 scopus 로고
    • Indexing by latent semantic analysis
    • Deerwester S et al (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41(6): 391-407.
    • (1990) J Am Soc Inf Sci , vol.41 , Issue.6 , pp. 391-407
    • Deerwester, S.1
  • 37
    • 43749088228 scopus 로고    scopus 로고
    • Text classification based on labeled-LDA model
    • Wenbo L, Le S, Dakun Z (2008) Text classification based on labeled-LDA model. Chinese J Comput 31(4): 620-627.
    • (2008) Chinese J Comput , vol.31 , Issue.4 , pp. 620-627
    • Wenbo, L.1    Le, S.2    Dakun, Z.3
  • 38
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42(1): 177-196.
    • (2001) Mach Learn , vol.42 , Issue.1 , pp. 177-196
    • Hofmann, T.1
  • 39
    • 80053431219 scopus 로고    scopus 로고
    • An introduction to latent semantic analysis
    • Landauer TK, Foltz PPW, Laham D (1998) An introduction to latent semantic analysis. Discourse Process 25(2): 259-284.
    • (1998) Discourse Process , vol.25 , Issue.2 , pp. 259-284
    • Landauer, T.K.1    Foltz, P.P.W.2    Laham, D.3
  • 42
    • 85162047720 scopus 로고    scopus 로고
    • A Bayesian LDA-based model for semi-supervised part-of-speech tagging
    • Toutanova K, Johnson M (2007) A Bayesian LDA-based model for semi-supervised part-of-speech tagging. Adv Neural Inf Process Syst 1521-1528.
    • (2007) Adv Neural Inf Process Syst , pp. 1521-1528
    • Toutanova, K.1    Johnson, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.