메뉴 건너뛰기




Volumn 15, Issue 6, 2011, Pages 830-839

On the convergence of EM-like algorithms for image segmentation using Markov random fields

Author keywords

Convergence; Expectation maximization; Markov random field; Mean field; Segmentation

Indexed keywords

BRAIN TISSUE; CONVERGENCE; CONVERGENCE PROPERTIES; CONVERGENCE RESULTS; EXPECTATION MAXIMIZATION; EXPECTATION-MAXIMIZATION ALGORITHMS; FASTER CONVERGENCE; INDEPENDENT MIXTURE MODELS; MAGNETIC RESONANCE IMAGES; MARKOV RANDOM FIELDS; MEAN FIELD; NUMERICAL SCHEME; SEGMENTATION RESULTS;

EID: 80955181095     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2011.05.002     Document Type: Article
Times cited : (43)

References (40)
  • 1
    • 20444501009 scopus 로고    scopus 로고
    • Unified segmentation
    • Ashburner J., Friston K. Unified segmentation. NeuroImage 2005, 26(3):839-851.
    • (2005) NeuroImage , vol.26 , Issue.3 , pp. 839-851
    • Ashburner, J.1    Friston, K.2
  • 2
    • 33746094676 scopus 로고    scopus 로고
    • A new improved version of the realistic digital brain phantom
    • Aubert-Broche B., Evans A., Collins L. A new improved version of the realistic digital brain phantom. NeuroImage 2006, 32(1):138-145.
    • (2006) NeuroImage , vol.32 , Issue.1 , pp. 138-145
    • Aubert-Broche, B.1    Evans, A.2    Collins, L.3
  • 3
    • 29144517748 scopus 로고    scopus 로고
    • Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images
    • Bach Cuadra M., Cammoun L., Butz T., Cuisenaire O., Thiran J.-P. Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Transactions on Medical Imaging 2005, 24(12):1548-1565.
    • (2005) IEEE Transactions on Medical Imaging , vol.24 , Issue.12 , pp. 1548-1565
    • Bach Cuadra, M.1    Cammoun, L.2    Butz, T.3    Cuisenaire, O.4    Thiran, J.-P.5
  • 4
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B 1974, 36(2):192-236.
    • (1974) Journal of the Royal Statistical Society: Series B , vol.36 , Issue.2 , pp. 192-236
    • Besag, J.1
  • 5
    • 80955177430 scopus 로고    scopus 로고
    • Some notes on alternating optimization. In: Advances in Soft Computing - AFSS International Conference on Fuzzy Systems
    • Bezdek, J.C., Hathaway, R.J., 2002. Some notes on alternating optimization. In: Advances in Soft Computing - AFSS International Conference on Fuzzy Systems. Lecture Notes in Computer Science, vol. 2275, pp. 288-300.
    • (2002) Lecture Notes in Computer Science , vol.2275 , pp. 288-300
    • Bezdek, J.C.1    Hathaway, R.J.2
  • 9
    • 0001560954 scopus 로고
    • Information geometry and alternating minimization procedures
    • supplement Issue
    • Csiszár I., Tusnády G. Information geometry and alternating minimization procedures. Statistics & Decisions 1984, 1:205-237. supplement Issue.
    • (1984) Statistics & Decisions , vol.1 , pp. 205-237
    • Csiszár, I.1    Tusnády, G.2
  • 11
    • 0032096942 scopus 로고    scopus 로고
    • On the convergence of mean field procedures for MRFs
    • Fessler J. On the convergence of mean field procedures for MRFs. IEEE Transactions on Image Processing 1998, 7(6):917.
    • (1998) IEEE Transactions on Image Processing , vol.7 , Issue.6 , pp. 917
    • Fessler, J.1
  • 12
    • 33947218847 scopus 로고    scopus 로고
    • Combining Monte Carlo and mean-field-like methods for inference in hidden Markov random fields
    • Forbes F., Fort G. Combining Monte Carlo and mean-field-like methods for inference in hidden Markov random fields. IEEE Transactions on Image Processing 2007, 16(3):824-837.
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.3 , pp. 824-837
    • Forbes, F.1    Fort, G.2
  • 14
    • 80955178727 scopus 로고    scopus 로고
    • Model based three dimensional medical image segmentation. Ph.D. thesis, Massachusetts Institute of Technology.
    • Kapur, T., 1999. Model based three dimensional medical image segmentation. Ph.D. thesis, Massachusetts Institute of Technology.
    • (1999)
    • Kapur, T.1
  • 15
    • 0033233097 scopus 로고    scopus 로고
    • MRI simulation-based evaluation of image-processing and classification methods
    • Kwan R.-S., Evans A., Pike G. MRI simulation-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging 1999, 18(11):1085-1097.
    • (1999) IEEE Transactions on Medical Imaging , vol.18 , Issue.11 , pp. 1085-1097
    • Kwan, R.-S.1    Evans, A.2    Pike, G.3
  • 17
    • 59449106815 scopus 로고    scopus 로고
    • An EM approach to MAP solution of segmenting tissue mixtures: a numerical analysis
    • Liang Z., Wang S. An EM approach to MAP solution of segmenting tissue mixtures: a numerical analysis. IEEE Transactions on Medical Imaging 2009, 28(2):297-310.
    • (2009) IEEE Transactions on Medical Imaging , vol.28 , Issue.2 , pp. 297-310
    • Liang, Z.1    Wang, S.2
  • 19
    • 80955177431 scopus 로고    scopus 로고
    • Divergence measures and message passing. Tech. Rep. MSR-TR-2005-173, Microsoft Research Ltd., Cambridge, UK.
    • Minka, T.P., 2005. Divergence measures and message passing. Tech. Rep. MSR-TR-2005-173, Microsoft Research Ltd., Cambridge, UK.
    • (2005)
    • Minka, T.P.1
  • 20
    • 0023940563 scopus 로고
    • Compensation for surface coil sensitivity variation in magnetic resonance imaging
    • Narayana P., Brey W., Kulkarni M., Sievenpiper C. Compensation for surface coil sensitivity variation in magnetic resonance imaging. Magnetic Resonance Imaging 1988, 6:271-274.
    • (1988) Magnetic Resonance Imaging , vol.6 , pp. 271-274
    • Narayana, P.1    Brey, W.2    Kulkarni, M.3    Sievenpiper, C.4
  • 21
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Kluwer Academic Publishers. M. Jordan (Ed.)
    • Neal R., Hinton G. A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in Graphical Models 1998, 355-368. Kluwer Academic Publishers. M. Jordan (Ed.).
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 22
    • 16244387927 scopus 로고    scopus 로고
    • Bayesian fMRI time series analysis with spatial priors
    • Penny W., Trujillo-Bareto N., Friston K. Bayesian fMRI time series analysis with spatial priors. NeuroImage 2005, 24(2):350-362.
    • (2005) NeuroImage , vol.24 , Issue.2 , pp. 350-362
    • Penny, W.1    Trujillo-Bareto, N.2    Friston, K.3
  • 23
    • 80955179916 scopus 로고    scopus 로고
    • Unsupervised image segmentation method based on finite generalized Gaussian distribution with EM&K-means algorithm
    • Prasad R., Srinivas R., Srinivas Y. Unsupervised image segmentation method based on finite generalized Gaussian distribution with EM&K-means algorithm. International Journal of Computer Science and Network Security 2007, 7(4):317-321.
    • (2007) International Journal of Computer Science and Network Security , vol.7 , Issue.4 , pp. 317-321
    • Prasad, R.1    Srinivas, R.2    Srinivas, Y.3
  • 24
    • 84958175097 scopus 로고    scopus 로고
    • Maximum likelihood estimation of the bias field in MR brain images: investigating different modelings of the imaging process
    • Springer Verlag, Medical Image Computing And Computer-Assisted Intervention (MICCAI)
    • Prima S., Ayache N., Barrick T., Roberts N. Maximum likelihood estimation of the bias field in MR brain images: investigating different modelings of the imaging process. LNCS 2001, vol. 2208:811-819. Springer Verlag.
    • (2001) LNCS , vol.2208 , pp. 811-819
    • Prima, S.1    Ayache, N.2    Barrick, T.3    Roberts, N.4
  • 26
    • 0034851632 scopus 로고    scopus 로고
    • Magnetic resonance image tissue classification using a partial volume model
    • Shattuck D., Sandor-Leahy S., Schaper K., Rottenberg D., Leahy R. Magnetic resonance image tissue classification using a partial volume model. NeuroImage 2001, 13(5):856-876.
    • (2001) NeuroImage , vol.13 , Issue.5 , pp. 856-876
    • Shattuck, D.1    Sandor-Leahy, S.2    Schaper, K.3    Rottenberg, D.4    Leahy, R.5
  • 27
    • 0031987382 scopus 로고    scopus 로고
    • A nonparametric method for automatic correction of intensity nonuniformity in MRI data
    • Sled J., Zijdenbos A., Evans A. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 1998, 17:87-97.
    • (1998) IEEE Transactions on Medical Imaging , vol.17 , pp. 87-97
    • Sled, J.1    Zijdenbos, A.2    Evans, A.3
  • 32
    • 27744456278 scopus 로고    scopus 로고
    • MAP estimation via agreement on (hyper)trees: message-passing and linear-programming approaches
    • Wainwright M., Jaakkola T., Willsky A. MAP estimation via agreement on (hyper)trees: message-passing and linear-programming approaches. IEEE Transactions on Information Theory 2005, 51(11):3697-3717.
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.11 , pp. 3697-3717
    • Wainwright, M.1    Jaakkola, T.2    Willsky, A.3
  • 33
    • 80955179920 scopus 로고    scopus 로고
    • Systematic spatial distortion in MRI due to gradient nonlinearities. In: Proceedings of the 7th Annual Human Brain Mapping Meeting, Brighton, UK
    • Wald, L., Schmitt, F., Dale, A., 2001. Systematic spatial distortion in MRI due to gradient nonlinearities. In: Proceedings of the 7th Annual Human Brain Mapping Meeting, Brighton, UK, p. 203.
    • (2001) , pp. 203
    • Wald, L.1    Schmitt, F.2    Dale, A.3
  • 34
    • 33749241036 scopus 로고    scopus 로고
    • MIT Press, Chapter: Comparing the mean field method and belief propagation for approximate inference in MRFs
    • Weiss Y. Advanced Mean Field Methods 2001, MIT Press, Chapter: Comparing the mean field method and belief propagation for approximate inference in MRFs, pp. 229-239.
    • (2001) Advanced Mean Field Methods , pp. 229-239
    • Weiss, Y.1
  • 35
    • 0035246323 scopus 로고    scopus 로고
    • On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs
    • Weiss Y., Freeman W. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory 2001, 47(2):723-735.
    • (2001) IEEE Transactions on Information Theory , vol.47 , Issue.2 , pp. 723-735
    • Weiss, Y.1    Freeman, W.2
  • 37
    • 33947193059 scopus 로고    scopus 로고
    • Variational Bayes inference of spatial mixture models for segmentation
    • Woolrich M., Behrens T. Variational Bayes inference of spatial mixture models for segmentation. IEEE Transactions on Medical Imaging 2006, 25(10):1380-1391.
    • (2006) IEEE Transactions on Medical Imaging , vol.25 , Issue.10 , pp. 1380-1391
    • Woolrich, M.1    Behrens, T.2
  • 38
    • 0026938712 scopus 로고
    • The mean field theory in EM procedures for Markov random fields
    • Zhang J. The mean field theory in EM procedures for Markov random fields. IEEE Transactions on Signal Processing 1992, 40(10):2570-2583.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.10 , pp. 2570-2583
    • Zhang, J.1
  • 39
    • 0030389199 scopus 로고    scopus 로고
    • The convergence of mean-field procedures for MRFs
    • Zhang J. The convergence of mean-field procedures for MRFs. IEEE Transactions on Image Processing 1996, 5(12):1662-1665.
    • (1996) IEEE Transactions on Image Processing , vol.5 , Issue.12 , pp. 1662-1665
    • Zhang, J.1
  • 40
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang Y., Brady J., Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 2001, 20(1):45-57.
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, J.2    Smith, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.