-
1
-
-
0035301717
-
Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics
-
Rozvany G.I.N. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct. Multidisc. Optim. 2001, 21:90-108.
-
(2001)
Struct. Multidisc. Optim.
, vol.21
, pp. 90-108
-
-
Rozvany, G.I.N.1
-
2
-
-
0001241926
-
Material interpolations in topology optimization
-
Bendsφe M.P., Sigmund O. Material interpolations in topology optimization. Arch. Appl. Mech. 1999, 69:635-654.
-
(1999)
Arch. Appl. Mech.
, vol.69
, pp. 635-654
-
-
Bendse, M.P.1
Sigmund, O.2
-
4
-
-
0842290715
-
Structural optimization using sensitivity analysis and a level-set method
-
Allaire G., Jouve F., Toader A. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 2004, 194:363-393.
-
(2004)
J. Comput. Phys.
, vol.194
, pp. 363-393
-
-
Allaire, G.1
Jouve, F.2
Toader, A.3
-
5
-
-
46149098931
-
Adaptive moving mesh level set method for structure optimization
-
Liu Z., Korvink J.G. Adaptive moving mesh level set method for structure optimization. Eng. Optim. 2008, 40:529-558.
-
(2008)
Eng. Optim.
, vol.40
, pp. 529-558
-
-
Liu, Z.1
Korvink, J.G.2
-
6
-
-
77951287433
-
A finite element-based level set method for structural optimization
-
Xing X., Wei P., Wang M.Y. A finite element-based level set method for structural optimization. Int. J. Numer. Methods Eng. 2010, 82:805-842.
-
(2010)
Int. J. Numer. Methods Eng.
, vol.82
, pp. 805-842
-
-
Xing, X.1
Wei, P.2
Wang, M.Y.3
-
7
-
-
0024105011
-
Generating optimal topologies in optimal design using a homogenization method
-
Bendsφe M.P., Kikuchi N. Generating optimal topologies in optimal design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71:197-224.
-
(1988)
Comput. Methods Appl. Mech. Eng.
, vol.71
, pp. 197-224
-
-
Bendse, M.P.1
Kikuchi, N.2
-
8
-
-
0035301988
-
A 99-line topology optimization code written in Matlab
-
Sigmund O. A 99-line topology optimization code written in Matlab. Struct. Multidisc. Optim. 2001, 21:120-127.
-
(2001)
Struct. Multidisc. Optim.
, vol.21
, pp. 120-127
-
-
Sigmund, O.1
-
9
-
-
0031270912
-
On the design of compliant mechanisms using topology optimization
-
Sigmund O. On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 1997, 25:495-526.
-
(1997)
Mech. Struct. Mach.
, vol.25
, pp. 495-526
-
-
Sigmund, O.1
-
10
-
-
28344455441
-
Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports
-
Saxena A. Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Struct. Multidisc. Optim. 2005, 30:477-490.
-
(2005)
Struct. Multidisc. Optim.
, vol.30
, pp. 477-490
-
-
Saxena, A.1
-
13
-
-
33644971897
-
Topology optimization of heat conduction problems using the finite volume method
-
Gersborg-Hansen A., Bendsφe M.P., Sigmund O. Topology optimization of heat conduction problems using the finite volume method. Struct. Multidisc. Optim. 2006, 31:251-259.
-
(2006)
Struct. Multidisc. Optim.
, vol.31
, pp. 251-259
-
-
Gersborg-Hansen, A.1
Bendse, M.P.2
Sigmund, O.3
-
14
-
-
34548583311
-
Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique
-
Nomura T., Sato K., Taguchi K., Kashiwa T., Nishiwaki S. Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int. J. Numer. Methods Eng. 2007, 71:1261-1296.
-
(2007)
Int. J. Numer. Methods Eng.
, vol.71
, pp. 1261-1296
-
-
Nomura, T.1
Sato, K.2
Taguchi, K.3
Kashiwa, T.4
Nishiwaki, S.5
-
15
-
-
42449123312
-
Geometric properties of optimal photonic crystals
-
Sigmund O., Hougaard K.G. Geometric properties of optimal photonic crystals. Phys. Rev. Lett. 2008, 100:153904.
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 153904
-
-
Sigmund, O.1
Hougaard, K.G.2
-
17
-
-
62649135598
-
Topology optimization of a plate coupled with acoustic cavity
-
Akl W., El-Sabbagh A., Al-Mitani K., Baz A. Topology optimization of a plate coupled with acoustic cavity. Int. J. Solids Struct. 2008, 46:2060-2074.
-
(2008)
Int. J. Solids Struct.
, vol.46
, pp. 2060-2074
-
-
Akl, W.1
El-Sabbagh, A.2
Al-Mitani, K.3
Baz, A.4
-
18
-
-
14244260727
-
Topological sensitivity and shape optimization for the Stokes equations
-
Guillaume P.H., Idris K.S. Topological sensitivity and shape optimization for the Stokes equations. SIAM J. Cont. Optim. 2004, 43:1-31.
-
(2004)
SIAM J. Cont. Optim.
, vol.43
, pp. 1-31
-
-
Guillaume, P.H.1
Idris, K.S.2
-
19
-
-
38349147116
-
Topology optimization of large scale stokes flow problems
-
Aage N., Poulsen T.H., Gersborg-Hansen A., Sigmund O. Topology optimization of large scale stokes flow problems. Struct. Multidisc. Optim. 2008, 35:175-180.
-
(2008)
Struct. Multidisc. Optim.
, vol.35
, pp. 175-180
-
-
Aage, N.1
Poulsen, T.H.2
Gersborg-Hansen, A.3
Sigmund, O.4
-
20
-
-
33645934529
-
Topology optimization of creeping fluid flows using a Darcy-Stokes finite element
-
Guest J.K., Proevost J.H. Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. Int. J. Numer. Methods Eng. 2006, 66:461-484.
-
(2006)
Int. J. Numer. Methods Eng.
, vol.66
, pp. 461-484
-
-
Guest, J.K.1
Proevost, J.H.2
-
23
-
-
32444435759
-
A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow
-
Olesen L.H., Okkels F., Bruus H. A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int. J. Numer. Methods Eng. 2006, 65:975-1001.
-
(2006)
Int. J. Numer. Methods Eng.
, vol.65
, pp. 975-1001
-
-
Olesen, L.H.1
Okkels, F.2
Bruus, H.3
-
24
-
-
31344456460
-
Topology optimization of slightly compressible fluids
-
Evgrafov A. Topology optimization of slightly compressible fluids. ZAMM 2006, 86:46-62.
-
(2006)
ZAMM
, vol.86
, pp. 46-62
-
-
Evgrafov, A.1
-
25
-
-
53449094897
-
Shape-topology optimization for Navier-Stokes problem using variational level set method
-
Duan X., Ma Y., Zhang R. Shape-topology optimization for Navier-Stokes problem using variational level set method. J. Comput. Appl. Math. 2008, 222:487-499.
-
(2008)
J. Comput. Appl. Math.
, vol.222
, pp. 487-499
-
-
Duan, X.1
Ma, Y.2
Zhang, R.3
-
26
-
-
54249147959
-
A variational level set method for the topology optimization of steady-state Navier-Stokes flow
-
Zhou S., Li Q. A variational level set method for the topology optimization of steady-state Navier-Stokes flow. J. Comput. Phys. 2008, 227:10178-10195.
-
(2008)
J. Comput. Phys.
, vol.227
, pp. 10178-10195
-
-
Zhou, S.1
Li, Q.2
-
27
-
-
77949486400
-
Optimal design for non-Newtonian flows using a topology optimization approach
-
Pingen G., Maute K. Optimal design for non-Newtonian flows using a topology optimization approach. Comput. Math. Appl. 2010, 59:2340-2350.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 2340-2350
-
-
Pingen, G.1
Maute, K.2
-
28
-
-
32044451797
-
Application of topology optimization in the design of micro and nanofluidic systems
-
Okkels F., Olesen L.H., Bruus H. Application of topology optimization in the design of micro and nanofluidic systems. NSTI-Nanotech 2005, 575-578.
-
(2005)
NSTI-Nanotech
, pp. 575-578
-
-
Okkels, F.1
Olesen, L.H.2
Bruus, H.3
-
29
-
-
33846401087
-
Scaling behavior of optimally structured catalytic microfluidic reactors
-
Okkels F., Bruus H. Scaling behavior of optimally structured catalytic microfluidic reactors. Phys. Rev. E 2007, 75:1-4.
-
(2007)
Phys. Rev. E
, vol.75
, pp. 1-4
-
-
Okkels, F.1
Bruus, H.2
-
31
-
-
77952748109
-
Optimization of no-moving-part fluidic resistance microvalves with low Reynolds number
-
in: IEEE MEMS Conference,
-
Y.B. Deng, Z.Y. Liu, P. Zhang, Y.H. Wu, J.G. Korvink, Optimization of no-moving-part fluidic resistance microvalves with low Reynolds number, in: IEEE MEMS Conference, 2010, pp. 67-70.
-
(2010)
, pp. 67-70
-
-
Deng, Y.B.1
Liu, Z.Y.2
Zhang, P.3
Wu, Y.H.4
Korvink, J.G.5
-
32
-
-
44749084234
-
Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations
-
Osher S., Sethian J.A. Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 78:12-49.
-
(1988)
J. Comput. Phys.
, vol.78
, pp. 12-49
-
-
Osher, S.1
Sethian, J.A.2
-
33
-
-
0032681559
-
On the topological derivative in shape optimization
-
Sokolowski J., Zochowski A. On the topological derivative in shape optimization. SIAM J. Control Optim. 1999, 37:1241-1272.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 1241-1272
-
-
Sokolowski, J.1
Zochowski, A.2
-
34
-
-
0000054499
-
Topological derivatives for elliptic problems
-
Sokolowski J., Zochowski A. Topological derivatives for elliptic problems. Inverse Problems 1999, 15:123-134.
-
(1999)
Inverse Problems
, vol.15
, pp. 123-134
-
-
Sokolowski, J.1
Zochowski, A.2
-
35
-
-
0037436110
-
Topological sensitivity analysis
-
Novotny A.A., Feijoo R.A., Taroco E., Padra C. Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 2003, 192:803-829.
-
(2003)
Comput. Methods Appl. Mech. Eng.
, vol.192
, pp. 803-829
-
-
Novotny, A.A.1
Feijoo, R.A.2
Taroco, E.3
Padra, C.4
-
36
-
-
0842312288
-
Incorporating topological derivatives into level set methods
-
Burger M., Hackl B., Ring W. Incorporating topological derivatives into level set methods. J. Comput. Phys 2004, 194:344-362.
-
(2004)
J. Comput. Phys
, vol.194
, pp. 344-362
-
-
Burger, M.1
Hackl, B.2
Ring, W.3
-
37
-
-
33644932758
-
Topological sensitivity analysis for some nonlinear PDE systems
-
Amstutz S. Topological sensitivity analysis for some nonlinear PDE systems. J. Math. Pures Appl. 2006, 85:540-557.
-
(2006)
J. Math. Pures Appl.
, vol.85
, pp. 540-557
-
-
Amstutz, S.1
-
38
-
-
69249113749
-
Level set topology optimization of fluids in Stokes flow
-
Challis V.J., Guest J.K. Level set topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Eng. 2009, 79:1284-1308.
-
(2009)
Int. J. Numer. Methods Eng.
, vol.79
, pp. 1284-1308
-
-
Challis, V.J.1
Guest, J.K.2
-
39
-
-
67349250760
-
Topological optimization method for a geometric control problem in Stokes flow
-
Abdelwahed M., Hassine M. Topological optimization method for a geometric control problem in Stokes flow. Appl. Numer. Math. 2009, 59:1823-1838.
-
(2009)
Appl. Numer. Math.
, vol.59
, pp. 1823-1838
-
-
Abdelwahed, M.1
Hassine, M.2
-
40
-
-
80955177314
-
Shape optimization for the Stokes equations using topological sensitivity analysis
-
Maatoug H. Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA 2006, 5:216-229.
-
(2006)
ARIMA
, vol.5
, pp. 216-229
-
-
Maatoug, H.1
-
41
-
-
84872471102
-
Shape optimization with level set method incorporating topological derivatives,
-
in: Sixth Congresses of Struc. Multidisc. Optim.
-
M.Y. Wang, Shape optimization with level set method incorporating topological derivatives, in: Sixth Congresses of Struc. Multidisc. Optim., 2005.
-
(2005)
-
-
Wang, M.Y.1
-
43
-
-
73649134283
-
An adjoint method for shape optimization in unsteady viscous flows
-
Srinath D.N., Mittal S. An adjoint method for shape optimization in unsteady viscous flows. J. Comput. Phys. 2010, 229:1994-2008.
-
(2010)
J. Comput. Phys.
, vol.229
, pp. 1994-2008
-
-
Srinath, D.N.1
Mittal, S.2
-
44
-
-
84955656205
-
A continuous adjoint approach to shape optimization for Navier-Stokes flow
-
Brandenburg C., Lindemann F., Ulbrich M., Ulbrich S. A continuous adjoint approach to shape optimization for Navier-Stokes flow. Int. Ser. Numer. Math. 2009, 158:35-56.
-
(2009)
Int. Ser. Numer. Math.
, vol.158
, pp. 35-56
-
-
Brandenburg, C.1
Lindemann, F.2
Ulbrich, M.3
Ulbrich, S.4
-
48
-
-
0034433978
-
An introduction to the adjoint approach to design
-
Giles M.B., Pierce N.A. An introduction to the adjoint approach to design. Flow Turbulence Combust. 2000, 65:393-415.
-
(2000)
Flow Turbulence Combust.
, vol.65
, pp. 393-415
-
-
Giles, M.B.1
Pierce, N.A.2
-
49
-
-
84919871630
-
Applied shape optimization for fluids, OXFORD,
-
B. Mohammadi, O. Pironneau, Applied shape optimization for fluids, OXFORD, 2010.
-
(2010)
-
-
Mohammadi, B.1
Pironneau, O.2
-
52
-
-
85190085510
-
-
http://www.comsol.com.
-
-
-
-
53
-
-
0023287947
-
The method of moving asymptotes: a new method for structural optimization
-
Svanberg K. The method of moving asymptotes: a new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24:359-373.
-
(1987)
Int. J. Numer. Methods Eng.
, vol.24
, pp. 359-373
-
-
Svanberg, K.1
-
54
-
-
0346429871
-
Finite elements and fast iterative solvers
-
with applications in incompressible fluid dynamics, OXFORD
-
H.C. Elman, D.J. Silvester, A.J. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics, OXFORD, 2006.
-
(2006)
-
-
Elman, H.C.1
Silvester, D.J.2
Wathen, A.J.3
-
57
-
-
77952634651
-
Hydrodynamic gating for sample introduction on a microfluidic chip
-
Chen P., Feng X., Sun J., Wang Y., Du W., Liu B.F. Hydrodynamic gating for sample introduction on a microfluidic chip. Lab on a chip 2010, 10:1472-1475.
-
(2010)
Lab on a chip
, vol.10
, pp. 1472-1475
-
-
Chen, P.1
Feng, X.2
Sun, J.3
Wang, Y.4
Du, W.5
Liu, B.F.6
-
58
-
-
80955179795
-
Topology optimization of mass distribution problems in Stokes flow
-
Gersborg-Hansen A., Berggren M., Dammann B. Topology optimization of mass distribution problems in Stokes flow. Solid Mech. Appl. 2006, 137:365-374.
-
(2006)
Solid Mech. Appl.
, vol.137
, pp. 365-374
-
-
Gersborg-Hansen, A.1
Berggren, M.2
Dammann, B.3
-
60
-
-
34547600990
-
Design and fabrication of a centrifugally driven microfluidic disk for fully integrated metabolic assays on whole blood
-
Ducrée J., Haeberle S., Lutz S., Pausch S., Stetten F., Zengerle R. Design and fabrication of a centrifugally driven microfluidic disk for fully integrated metabolic assays on whole blood. J. Micromech. Microeng. 2007, 17:103-115.
-
(2007)
J. Micromech. Microeng.
, vol.17
, pp. 103-115
-
-
Ducrée, J.1
Haeberle, S.2
Lutz, S.3
Pausch, S.4
Stetten, F.5
Zengerle, R.6
|