메뉴 건너뛰기




Volumn 141, Issue 11, 2011, Pages 3564-3577

Estimation and prediction for spatial generalized linear mixed models using high order Laplace approximation

Author keywords

Generalized linear mixed models; Laplace approximation; Maximum likelihood estimation; Predictive inference; Spatial statistics

Indexed keywords


EID: 80955177093     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2011.05.008     Document Type: Article
Times cited : (29)

References (37)
  • 5
    • 0003020981 scopus 로고
    • Bias correction in generalised linear mixed models with a single component of dispersion
    • Breslow N.E., Lin X. Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika 1995, 82:81-91.
    • (1995) Biometrika , vol.82 , pp. 81-91
    • Breslow, N.E.1    Lin, X.2
  • 6
  • 8
    • 0003861423 scopus 로고    scopus 로고
    • Analysis of Spatial Data Using Generalized Linear Mixed Models and Langevin-Type Markov Chain Monte Carlo
    • Department of Mathematical Sciences, Aalborg University.
    • Christensen, O.F., Møller, J., Waagepetersen, R., 2000. Analysis of Spatial Data Using Generalized Linear Mixed Models and Langevin-Type Markov Chain Monte Carlo. Technical Report. Department of Mathematical Sciences, Aalborg University.
    • (2000) Technical Report
    • Christensen, O.F.1    Møller, J.2    Waagepetersen, R.3
  • 9
    • 16244366582 scopus 로고    scopus 로고
    • GeoRglm: a package for generalised linear spatial models
    • Christensen O.F., Ribeiro P.J. GeoRglm: a package for generalised linear spatial models. R News 2002, 2(2):26-28.
    • (2002) R News , vol.2 , Issue.2 , pp. 26-28
    • Christensen, O.F.1    Ribeiro, P.J.2
  • 10
    • 0035989805 scopus 로고    scopus 로고
    • Bayesian prediction of spatial count data using generalized linear mixed models
    • Christensen O.F., Waagepetersen R. Bayesian prediction of spatial count data using generalized linear mixed models. Biometrics 2002, 58(2):280-286.
    • (2002) Biometrics , vol.58 , Issue.2 , pp. 280-286
    • Christensen, O.F.1    Waagepetersen, R.2
  • 18
    • 60249097990 scopus 로고    scopus 로고
    • Approximate Bayesian inference in spatial generalized linear mixed models
    • Eidsvik J., Martino S., Rue H. Approximate Bayesian inference in spatial generalized linear mixed models. Scandinavian Journal of Statistics 2009, 36(1):1-22.
    • (2009) Scandinavian Journal of Statistics , vol.36 , Issue.1 , pp. 1-22
    • Eidsvik, J.1    Martino, S.2    Rue, H.3
  • 20
    • 0033242613 scopus 로고    scopus 로고
    • Laplace importance sampling for generalized linear mixed models
    • Kuk A.Y.C. Laplace importance sampling for generalized linear mixed models. Journal of Statistical Computation and Simulation 1999, 63:143-158.
    • (1999) Journal of Statistical Computation and Simulation , vol.63 , pp. 143-158
    • Kuk, A.Y.C.1
  • 21
    • 0030336576 scopus 로고    scopus 로고
    • Bias correction in generalized linear mixed models with multiple components of dispersion
    • Lin X., Breslow N.E. Bias correction in generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association 1996, 91:1007-1016.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1007-1016
    • Lin, X.1    Breslow, N.E.2
  • 24
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch C.E. Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association 1997, 92:162-170.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 25
    • 33947127673 scopus 로고    scopus 로고
    • REML estimation for binary data in GLMMs
    • Noh M., Lee Y. REML estimation for binary data in GLMMs. Journal of Multivariate Analysis 2007, 98(5):896-915.
    • (2007) Journal of Multivariate Analysis , vol.98 , Issue.5 , pp. 896-915
    • Noh, M.1    Lee, Y.2
  • 26
    • 80955179414 scopus 로고    scopus 로고
    • R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2008)
  • 27
    • 77950035264 scopus 로고    scopus 로고
    • Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation
    • Raudenbush S.W., Yang M.-L., Yosef M. Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics 2000, 9(1):141-157.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , Issue.1 , pp. 141-157
    • Raudenbush, S.W.1    Yang, M.-L.2    Yosef, M.3
  • 29
    • 0031475942 scopus 로고    scopus 로고
    • Another look at the Salamander mating data: a modified Laplace approximation approach
    • Shun Z. Another look at the Salamander mating data: a modified Laplace approximation approach. Journal of the American Statistical Association 1997, 92:341-349.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 341-349
    • Shun, Z.1
  • 31
    • 0038320926 scopus 로고
    • Nonlinear component of variance models
    • Solomon P.J., Cox D.R. Nonlinear component of variance models. Biometrika 1992, 79:1-11.
    • (1992) Biometrika , vol.79 , pp. 1-11
    • Solomon, P.J.1    Cox, D.R.2
  • 34
    • 0001560641 scopus 로고
    • Fully exponential Laplace approximations to expectations and variances of nonpositive functions
    • Tierney L., Kass R.E., Kadane J.B. Fully exponential Laplace approximations to expectations and variances of nonpositive functions. Journal of the American Statistical Association 1989, 84:710-716.
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 710-716
    • Tierney, L.1    Kass, R.E.2    Kadane, J.B.3
  • 35
    • 33746013527 scopus 로고    scopus 로고
    • Response prediction in mixed effects models
    • Vidoni P. Response prediction in mixed effects models. Journal of Statistical Planning and Inference 2006, 136(11):3948-3966.
    • (2006) Journal of Statistical Planning and Inference , vol.136 , Issue.11 , pp. 3948-3966
    • Vidoni, P.1
  • 36
    • 0031222254 scopus 로고    scopus 로고
    • Two Taylor-series approximation methods for nonlinear mixed models
    • Wolfinger R., Lin X. Two Taylor-series approximation methods for nonlinear mixed models. Computational Statistics and Data Analysis 1997, 25:465-490.
    • (1997) Computational Statistics and Data Analysis , vol.25 , pp. 465-490
    • Wolfinger, R.1    Lin, X.2
  • 37
    • 0036188841 scopus 로고    scopus 로고
    • On estimation and prediction for spatial generalized linear mixed models
    • Zhang H. On estimation and prediction for spatial generalized linear mixed models. Biometrics 2002, 58(1):129-136.
    • (2002) Biometrics , vol.58 , Issue.1 , pp. 129-136
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.