-
1
-
-
0742320631
-
Cones and norms in the tensor product of matrix spaces
-
Ando T. Cones and norms in the tensor product of matrix spaces. Linear Algebra Appl. 2004, 379:3-41.
-
(2004)
Linear Algebra Appl.
, vol.379
, pp. 3-41
-
-
Ando, T.1
-
2
-
-
0016522050
-
Completely positive linear maps on complex matrices
-
Choi M.-D. Completely positive linear maps on complex matrices. Linear Algebra Appl. 1975, 10:285-290.
-
(1975)
Linear Algebra Appl.
, vol.10
, pp. 285-290
-
-
Choi, M.-D.1
-
4
-
-
40149086995
-
On the dimension of subspaces with bounded Schmidt rank
-
Cubitt T., Montanaro A., Winter A. On the dimension of subspaces with bounded Schmidt rank. J. Math. Phys. 2008, 49:022107.
-
(2008)
J. Math. Phys.
, vol.49
, pp. 022107
-
-
Cubitt, T.1
Montanaro, A.2
Winter, A.3
-
6
-
-
35448975107
-
Linear transformations which preserve trace and positive semidefinitness of operators
-
Jamiołkowski A. Linear transformations which preserve trace and positive semidefinitness of operators. Rep. Math. Phys. 1972, 3:275-278.
-
(1972)
Rep. Math. Phys.
, vol.3
, pp. 275-278
-
-
Jamiołkowski, A.1
-
7
-
-
23944454936
-
Some remarks on the role of minimal length of positive maps in constructing entanglement witnesses
-
Jamiołkowski A. Some remarks on the role of minimal length of positive maps in constructing entanglement witnesses. Open Syst. Inf. Dyn. 2004, 11:385-390.
-
(2004)
Open Syst. Inf. Dyn.
, vol.11
, pp. 385-390
-
-
Jamiołkowski, A.1
-
8
-
-
78049441828
-
A family of norms with applications in quantum information theory
-
Johnston N., Kribs D. A family of norms with applications in quantum information theory. J. Math. Phys. 2010, 51(8):082202.
-
(2010)
J. Math. Phys.
, vol.51
, Issue.8
, pp. 082202
-
-
Johnston, N.1
Kribs, D.2
-
9
-
-
78650993124
-
A family of norms with applications in quantum information theory, II
-
Johnston N., Kribs D. A family of norms with applications in quantum information theory, II. Quantum Inf. Comput. 2011, 11:104-123.
-
(2011)
Quantum Inf. Comput.
, vol.11
, pp. 104-123
-
-
Johnston, N.1
Kribs, D.2
-
10
-
-
0003007332
-
General state changes in quantum theory
-
Kraus K. General state changes in quantum theory. Ann. Phys. 1971, 64:311-335.
-
(1971)
Ann. Phys.
, vol.64
, pp. 311-335
-
-
Kraus, K.1
-
11
-
-
10044250143
-
On the maximal dimension of a completely entangled subspace for finite level quantum systems
-
Parthasarathy K. On the maximal dimension of a completely entangled subspace for finite level quantum systems. Proc. Indian Acad. Sci. Math. Sci. 2004, 114:365-374.
-
(2004)
Proc. Indian Acad. Sci. Math. Sci.
, vol.114
, pp. 365-374
-
-
Parthasarathy, K.1
-
12
-
-
54749138900
-
Spectral properties of entanglement witnesses
-
Sarbicki G. Spectral properties of entanglement witnesses. J. Phys. A 2008, 41:375303.
-
(2008)
J. Phys. A
, vol.41
, pp. 375303
-
-
Sarbicki, G.1
-
14
-
-
0040781865
-
Extension of positive maps into B(H)
-
Størmer E. Extension of positive maps into B(H). J. Funct. Anal. 1986, 66:235-254.
-
(1986)
J. Funct. Anal.
, vol.66
, pp. 235-254
-
-
Størmer, E.1
-
15
-
-
77957592832
-
Duality of cones of positive maps
-
Størmer E. Duality of cones of positive maps. Münster J. Math. 2009, 2:299-310.
-
(2009)
Münster J. Math.
, vol.2
, pp. 299-310
-
-
Størmer, E.1
-
16
-
-
79958707771
-
Mapping cones of positive maps
-
Størmer E. Mapping cones of positive maps. Math. Scand. 2011, 108:223-231.
-
(2011)
Math. Scand.
, vol.108
, pp. 223-231
-
-
Størmer, E.1
-
17
-
-
0035584893
-
A family of indecomposable linear maps based on entangled quantum states
-
Terhal B. A family of indecomposable linear maps based on entangled quantum states. Linear Algebra Appl. 2000, 323:61-73.
-
(2000)
Linear Algebra Appl.
, vol.323
, pp. 61-73
-
-
Terhal, B.1
-
18
-
-
0001087937
-
A note on positivity of elementary operators
-
Timoney R. A note on positivity of elementary operators. Bull. Lond. Math. Soc. 2000, 32:229-234.
-
(2000)
Bull. Lond. Math. Soc.
, vol.32
, pp. 229-234
-
-
Timoney, R.1
|