메뉴 건너뛰기




Volumn 323, Issue 1-3, 2001, Pages 61-73

A family of indecomposable positive linear maps based on entangled quantum states

Author keywords

Positive linear maps; Quantum entanglement; Quantum information theory

Indexed keywords


EID: 0035584893     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0024-3795(00)00251-2     Document Type: Article
Times cited : (180)

References (16)
  • 2
    • 0042376719 scopus 로고    scopus 로고
    • Separability of mixed states: Necessary and sufficient conditions
    • also available at
    • M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 223 (1996) 1-8; also available at http://xxx.lanl.gov/quant-ph/9605038.
    • (1996) Phys. Lett. A , vol.223 , pp. 1-8
    • Horodecki, M.1    Horodecki, P.2    Horodecki, R.3
  • 3
    • 0003143974 scopus 로고
    • Positive semidefinite biquadratic forms
    • Choi M.-D. Positive semidefinite biquadratic forms. Linear Algebra Appl. 12:1975;95-100.
    • (1975) Linear Algebra Appl. , vol.12 , pp. 95-100
    • Choi, M.-D.1
  • 4
    • 0343115511 scopus 로고
    • A series of absolutely indecomposable positive maps in matrix algebras
    • Osaka H. A series of absolutely indecomposable positive maps in matrix algebras. Linear Algebra Appl. 186:1993;45-53.
    • (1993) Linear Algebra Appl. , vol.186 , pp. 45-53
    • Osaka, H.1
  • 6
    • 0042243471 scopus 로고    scopus 로고
    • Unextendible product bases, uncompletable product bases and bound entanglement
    • (submitted); also quant-ph/9908070
    • D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, B.M. Terhal, Unextendible product bases, uncompletable product bases and bound entanglement, Comm. Math. Phys. (submitted); also quant-ph/9908070.
    • Comm. Math. Phys.
    • DiVincenzo, D.P.1    Mor, T.2    Shor, P.W.3    Smolin, J.A.4    Terhal, B.M.5
  • 8
    • 0001930151 scopus 로고
    • Completely positive maps and entropy inequalities
    • Lindblad G. Completely positive maps and entropy inequalities. Comm. Math. Phys. 40:1975;147-151.
    • (1975) Comm. Math. Phys. , vol.40 , pp. 147-151
    • Lindblad, G.1
  • 9
    • 0000260392 scopus 로고
    • Positive maps of low-dimensional maxtrix algebras
    • Woronowicz S.L. Positive maps of low-dimensional maxtrix algebras. Rep. Math. Phys. 10:1976;165-183.
    • (1976) Rep. Math. Phys. , vol.10 , pp. 165-183
    • Woronowicz, S.L.1
  • 10
    • 0042542909 scopus 로고    scopus 로고
    • Separability criterion and inseparable mixed states with positive partial transposition
    • Horodecki P. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A. 232:1997;333-339.
    • (1997) Phys. Lett. A , vol.232 , pp. 333-339
    • Horodecki, P.1
  • 11
    • 0008001217 scopus 로고    scopus 로고
    • Mixed-state entanglement and distillation: Is there a bound entanglement in nature?
    • Horodecki M., Horodecki P., Horodecki R. Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80:1998;5239-5242.
    • (1998) Phys. Rev. Lett. , vol.80 , pp. 5239-5242
    • Horodecki, M.1    Horodecki, P.2    Horodecki, R.3
  • 12
    • 4243805132 scopus 로고
    • Remarkable phase oscillations appearing in the lattice dynamics of Einstein-Podolsky-Rosen states
    • D.I. Fivel, Remarkable phase oscillations appearing in the lattice dynamics of Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 74 (1995) 835-838.
    • (1995) Phys. Rev. Lett. , vol.74 , pp. 835-838
    • Fivel, D.I.1
  • 13
    • 0001992982 scopus 로고
    • A complete classification of quantum ensembles having a given density matrix
    • Hughston L., Jozsa R., Wootters W. A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A. 183:1993;14-18.
    • (1993) Phys. Lett. A , vol.183 , pp. 14-18
    • Hughston, L.1    Jozsa, R.2    Wootters, W.3
  • 14
    • 35448975107 scopus 로고
    • Linear transformations which preserve trace and positive semidefiniteness of operators
    • Jamiolkowski A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3:1972;275-278.
    • (1972) Rep. Math. Phys. , vol.3 , pp. 275-278
    • Jamiolkowski, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.