메뉴 건너뛰기




Volumn 52, Issue 9, 2011, Pages 1257-1271

A Midpoint-Radius approach to regression with interval data

Author keywords

Interval regression; Midpoint Radius representation; Uncertainty representation

Indexed keywords

CONSTRAINED OPTIMIZATION PROBLEMS; GLOBAL UNCERTAINTY; INPUT-OUTPUT DATA; INTERVAL DATA; INTERVAL MODELS; INTERVAL REGRESSION; MIDPOINT-RADIUS REPRESENTATION; SIMULATION EXAMPLE; UNCERTAINTY REPRESENTATION;

EID: 80955142870     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2011.07.002     Document Type: Conference Paper
Times cited : (31)

References (48)
  • 1
    • 3142548349 scopus 로고    scopus 로고
    • On the algebraic properties of stochastic arithmetic. Comparison to interval arithmetic
    • W. Kraemer, J.W. von Gudenberg, Kluwer Academic Dordrecht
    • R. Alt, and S. Markov On the algebraic properties of stochastic arithmetic. Comparison to interval arithmetic W. Kraemer, J.W. von Gudenberg, Scientific Computing, Validated Numerics, Interval Methods 2001 Kluwer Academic Dordrecht 331 341
    • (2001) Scientific Computing, Validated Numerics, Interval Methods , pp. 331-341
    • Alt, R.1    Markov, S.2
  • 3
    • 58149119808 scopus 로고    scopus 로고
    • On a linear independence test for interval valued random sets, in soft methods for handling variability and imprecision
    • A. Blanco, A. Colubi, N. Corral, and G. González-Rodríguez On a linear independence test for interval valued random sets, in soft methods for handling variability and imprecision Advances in Soft Computing 48 2010 111 117
    • (2010) Advances in Soft Computing , vol.48 , pp. 111-117
    • Blanco, A.1    Colubi, A.2    Corral, N.3    González-Rodríguez, G.4
  • 4
    • 77958471616 scopus 로고    scopus 로고
    • A revisited approach for linear fuzzy regression using trapezoidal fuzzy intervals
    • A. Bisserier, R. Boukezzoula, and S. Galichet A revisited approach for linear fuzzy regression using trapezoidal fuzzy intervals Information Sciences 180 19 2010 3653 3673
    • (2010) Information Sciences , vol.180 , Issue.19 , pp. 3653-3673
    • Bisserier, A.1    Boukezzoula, R.2    Galichet, S.3
  • 8
    • 37249089766 scopus 로고    scopus 로고
    • MIN and MAX operators for fuzzy intervals and their potential use in aggregation operators
    • DOI 10.1109/TFUZZ.2006.890685, Special Issue on Aggregation Operators
    • R. Boukezzoula, S. Galichet, and L. Foulloy MIN and MAX operators for fuzzy intervals and their potential use in aggregation operators IEEE Transactions on Fuzzy Systems 15 6 2007 1135 1144 (Pubitemid 350268644)
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.6 , pp. 1135-1144
    • Boukezzoula, R.1    Galichet, S.2    Foulloy, L.3
  • 9
    • 33144485223 scopus 로고    scopus 로고
    • Inverse controller design for fuzzy interval systems
    • DOI 10.1109/TFUZZ.2005.861619
    • R. Boukezzoula, L. Foulloy, and S. Galichet Inverse controller design for interval fuzzy systems IEEE Transactions on Fuzzy Systems 14 1 2006 111 124 (Pubitemid 43263932)
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.1 , pp. 111-124
    • Boukezzoula, R.1    Foulloy, L.2    Galichet, S.3
  • 10
    • 71149087511 scopus 로고    scopus 로고
    • Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers
    • K.Y. Chan, C.K. Kwong, and T.C. Fogarty Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers Information Sciences 180 2010 506 518
    • (2010) Information Sciences , vol.180 , pp. 506-518
    • Chan, K.Y.1    Kwong, C.K.2    Fogarty, T.C.3
  • 11
    • 35748960851 scopus 로고    scopus 로고
    • Extended support vector interval regression networks for interval input-output data
    • C.C. Chuang Extended support vector interval regression networks for interval input-output data Information Sciences 178 2008 871 891
    • (2008) Information Sciences , vol.178 , pp. 871-891
    • Chuang, C.C.1
  • 12
    • 38349025453 scopus 로고    scopus 로고
    • Management of uncertainty in statistical reasoning: The case of regression analysis
    • R. Coppi Management of uncertainty in statistical reasoning: the case of regression analysis International Journal of Approximate Reasoning 47 3 2008 284 305
    • (2008) International Journal of Approximate Reasoning , vol.47 , Issue.3 , pp. 284-305
    • Coppi, R.1
  • 13
    • 33750310787 scopus 로고    scopus 로고
    • Least squares estimation of a linear regression model with LR fuzzy response
    • DOI 10.1016/j.csda.2006.04.036, PII S0167947306001332
    • R. Coppi, P. D'Urso, P. Giordani, and A. Santoro Least squares estimation of a linear regression model with LR fuzzy response Computational Statistics and Data Analysis 51 1 2006 267 286 (Pubitemid 44634808)
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.1 , pp. 267-286
    • Coppi, R.1    D'Urso, P.2    Giordani, P.3    Santoro, A.4
  • 14
  • 15
    • 0001697861 scopus 로고    scopus 로고
    • Fuzzy Sets in Decision Analysis, Operations Research and Statistics Kluwer Academic Publishers Norwell, MA
    • P. Diamond, and H. Tanaka Fuzzy Regression Analysis Fuzzy Sets in Decision Analysis, Operations Research and Statistics 1999 Kluwer Academic Publishers Norwell, MA
    • (1999) Fuzzy Regression Analysis
    • Diamond, P.1    Tanaka, H.2
  • 16
    • 0037454064 scopus 로고    scopus 로고
    • Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data
    • DOI 10.1016/S0167-9473(02)00117-2, PII S0167947302001172
    • P. D'Urso Linear regression analysis for fuzzy-crisp input and fuzzy-crisp output data Computational Statistics and Data Analysis 42 1-2 2003 47 72 (Pubitemid 36257915)
    • (2003) Computational Statistics and Data Analysis , vol.42 , Issue.1-2 , pp. 47-72
    • D'Urso, P.1
  • 17
    • 33750291939 scopus 로고    scopus 로고
    • Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable
    • DOI 10.1016/j.csda.2006.06.001, PII S0167947306001915
    • P. D'Urso, and A. Santoro Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable Computational Statistics and Data Analysis 51 1 2006 287 313 (Pubitemid 44634810)
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.1 , pp. 287-313
    • D'Urso, P.1    Santoro, A.2
  • 19
    • 42549099494 scopus 로고    scopus 로고
    • Gradual numbers and their application to fuzzy interval analysis
    • DOI 10.1109/TFUZZ.2006.890680
    • J. Fortin, D. Dubois, and H. Fargier Gradual numbers and their application to fuzzy interval analysis IEEE Transactions on Fuzzy Systems 16 2 2008 388 402 (Pubitemid 351586039)
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.2 , pp. 388-402
    • Fortin, J.1    Dubois, D.2    Fargier, H.3
  • 20
    • 0036400795 scopus 로고    scopus 로고
    • Least squares fitting of an affine function and strength of association for interval-valued data
    • M.A. Gil, M.A. Lubiano, M. Montenegro, and M.T. López Least squares fitting of an affine function and strength of association for interval-valued data Metrika 56 2 2002 97 111
    • (2002) Metrika , vol.56 , Issue.2 , pp. 97-111
    • Gil, M.A.1    Lubiano, M.A.2    Montenegro, M.3    López, M.T.4
  • 21
    • 33846807389 scopus 로고    scopus 로고
    • Testing linear independence in linear models with interval-valued data
    • DOI 10.1016/j.csda.2006.01.015, PII S016794730600020X
    • M.A. Gil, G. González-Rodríguez, A. Colubi, and M. Montenegro Testing linear independence in linear models with interval-valued data Computational Statistics and Data Analysis 51 6 2007 3002 3015 (Pubitemid 46201848)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.6 , pp. 3002-3015
    • Gil, M.A.1    Gonzalez-Rodriguez, G.2    Colubi, A.3    Montenegro, M.4
  • 23
    • 67649968190 scopus 로고    scopus 로고
    • Interval regression analysis using support vector networks
    • P-Y. Hao Interval regression analysis using support vector networks Fuzzy Sets and Systems 160 17 2009 2466 2485
    • (2009) Fuzzy Sets and Systems , vol.160 , Issue.17 , pp. 2466-2485
    • Hao, P.-Y.1
  • 24
    • 13544267455 scopus 로고    scopus 로고
    • A simple method for computation of fuzzy linear regression
    • DOI 10.1016/j.ejor.2004.01.039, PII S0377221704001080
    • M. Hojati, C.R. Bector, and K. Smimou A simple method for computation of fuzzy linear regression European Journal of Operational Research 166 2005 172 184 (Pubitemid 40219822)
    • (2005) European Journal of Operational Research , vol.166 , Issue.SPEC. ISS. 1 , pp. 172-184
    • Hojati, M.1    Bector, C.R.2    Smimou, K.3
  • 26
    • 0037399727 scopus 로고    scopus 로고
    • Interfaces between fuzzy set theory and interval analysis
    • (special issue)
    • W.A. Lodwick, and K.D. Jamison Interfaces between fuzzy set theory and interval analysis Fuzzy Sets and Systems 135 1 2003 1 3 (special issue)
    • (2003) Fuzzy Sets and Systems , vol.135 , Issue.1 , pp. 1-3
    • Lodwick, W.A.1    Jamison, K.D.2
  • 27
    • 0345622397 scopus 로고    scopus 로고
    • Computation of algebraic solutions to interval systems via systems of coordinates
    • W. Kraemer, J. Wolff von Gudenberg, Kluwer
    • S. Markov Computation of algebraic solutions to interval systems via systems of coordinates W. Kraemer, J. Wolff von Gudenberg, Scientific Computing, Validated Numerics, Interval Methods 2001 Kluwer 103 114
    • (2001) Scientific Computing, Validated Numerics, Interval Methods , pp. 103-114
    • Markov, S.1
  • 29
    • 33750306206 scopus 로고    scopus 로고
    • Regression with fuzzy random data
    • DOI 10.1016/j.csda.2006.02.021, PII S0167947306000661
    • W. Näther Regression with fuzzy random data Computational Statistics and Data Analysis 51 1 2006 235 252 (Pubitemid 44634792)
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.1 , pp. 235-252
    • Nather, W.1
  • 31
    • 0242490050 scopus 로고    scopus 로고
    • Nonparametric regression analysis of uncertain and imprecise data using belief functions
    • S. Petit-Renaud, and T. Denœux Nonparametric regression analysis of uncertain and imprecise data using belief functions International Journal of Approximate Reasoning 35 1 2004 1 28
    • (2004) International Journal of Approximate Reasoning , vol.35 , Issue.1 , pp. 1-28
    • Petit-Renaud, S.1    Denœux, T.2
  • 33
    • 33645862298 scopus 로고    scopus 로고
    • Limit distributions of least squares estimators in linear regression models with vague concepts
    • DOI 10.1016/j.jmva.2005.12.005, PII S0047259X05002095
    • V. Krätschmer Limit distribution of least squares estimators in linear regression models with vague concepts Journal of Multivariate Analysis 97 5 2006 1044 1069 (Pubitemid 43574706)
    • (2006) Journal of Multivariate Analysis , vol.97 , Issue.5 , pp. 1044-1069
    • Kratschmer, V.1
  • 34
    • 0035587831 scopus 로고    scopus 로고
    • Diagrammatic representation for interval arithmetic
    • Z. Kulpa Diagrammatic representation for interval arithmetic Linear Algebra and Its Applications 324 1-3 2001 55 80
    • (2001) Linear Algebra and Its Applications , vol.324 , Issue.13 , pp. 55-80
    • Kulpa, Z.1
  • 35
    • 4043092024 scopus 로고    scopus 로고
    • On the inclusion properties of interval multiplication: A diagrammatic study
    • DOI 10.1023/B:BITN.0000009960.43847.53
    • Z. Kulpa, and S. Markov On the inclusion properties of interval multiplication: a diagrammatic study BIT Numerical Mathematics 43 2003 791 810 (Pubitemid 39064035)
    • (2003) BIT Numerical Mathematics , vol.43 , Issue.4 , pp. 791-810
    • Kulpa, Z.1    Markov, S.2
  • 36
    • 0001563202 scopus 로고
    • Multiobjective fuzzy linear regression analysis for fuzzy input-output data
    • M. Sakawa, and H. Yano Multiobjective fuzzy linear regression analysis for fuzzy input-output data Fuzzy Sets and Systems 47 1992 173 181
    • (1992) Fuzzy Sets and Systems , vol.47 , pp. 173-181
    • Sakawa, M.1    Yano, H.2
  • 37
    • 0001875235 scopus 로고
    • Evaluation of fuzzy linear regression models
    • D.A. Savic, and W. Pedrycz Evaluation of fuzzy linear regression models Fuzzy Sets and Systems 39 1991 51 63
    • (1991) Fuzzy Sets and Systems , vol.39 , pp. 51-63
    • Savic, D.A.1    Pedrycz, W.2
  • 39
    • 0032205733 scopus 로고    scopus 로고
    • Interval regression analysis by quadratic programming approach
    • PII S1063670698082630
    • H. Tanaka, and H. Lee Interval regression analysis by quadratic programming approach IEEE Transactions on Fuzzy Systems 6 4 1998 473 481 (Pubitemid 128750078)
    • (1998) IEEE Transactions on Fuzzy Systems , vol.6 , Issue.4 , pp. 473-481
    • Tanaka, H.1    Lee, H.2
  • 43
    • 0037454066 scopus 로고    scopus 로고
    • Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data
    • DOI 10.1016/S0167-9473(02)00116-0, PII S0167947302001160
    • H.-C. Wu Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data Computational Statistics and Data Analysis 42 1-2 2003 203 217 (Pubitemid 36257924)
    • (2003) Computational Statistics and Data Analysis , vol.42 , Issue.1-2 , pp. 203-217
    • Wu, H.-C.1
  • 44
    • 59649088276 scopus 로고    scopus 로고
    • Asymmetrical interval regression using extended -SVM with robust algorithm
    • S.-Q. Xu, Q.-Y. Luo, G.-H. Xu, and L. Zhang Asymmetrical interval regression using extended -SVM with robust algorithm Fuzzy Sets and systems 160 7 2009 988 1002
    • (2009) Fuzzy Sets and Systems , vol.160 , Issue.7 , pp. 988-1002
    • Xu, S.-Q.1    Luo, Q.-Y.2    Xu, G.-H.3    Zhang, L.4
  • 45
    • 0002906641 scopus 로고    scopus 로고
    • On a class of fuzzy c-numbers clustering procedures for fuzzy data
    • M.-S. Yang, and C.-H. Ko On a class of fuzzy c-numbers clustering procedures for fuzzy data Fuzzy Sets and Systems 84 1996 49 60 (Pubitemid 126682900)
    • (1996) Fuzzy Sets and Systems , vol.84 , Issue.1 , pp. 49-60
    • Yang, M.-S.1    Ko, C.-H.2
  • 46
    • 0035313686 scopus 로고    scopus 로고
    • General fuzzy piecewise regression analysis with automatic change-point detection
    • J.R. Yu, G.H. Tzeng, and H.L. Li General fuzzy piecewise regression analysis with automatic change-point detection Fuzzy Sets and Systems 119 2001 247 257
    • (2001) Fuzzy Sets and Systems , vol.119 , pp. 247-257
    • Yu, J.R.1    Tzeng, G.H.2    Li, H.L.3
  • 48
    • 49349133217 scopus 로고
    • Fuzzy sets as a basis for a theory of possibility
    • L.A. Zadeh Fuzzy sets as a basis for a theory of possibility Fuzzy Sets and Systems 1 1978 3 28
    • (1978) Fuzzy Sets and Systems , vol.1 , pp. 3-28
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.