메뉴 건너뛰기




Volumn , Issue , 2011, Pages 142-146

Wavelet-based sensor validation: Differentiating abrupt sensor faults from system dynamics

Author keywords

multiresolution analysis; redundancy; sensor validation; system dynamics; universal threshold; wavelets

Indexed keywords

ABRUPT SENSOR FAULT; JOINT ANALYSIS; LOW FREQUENCY; SENSOR BEHAVIOR; SENSOR FAULT; SENSOR FAULT DETECTION; SENSOR READINGS; SENSOR SIGNALS; SENSOR VALIDATION; SIGNAL CHANGES; SYSTEM CONDITIONS; SYSTEM DYNAMICS; SYSTEM STATUS; UNIVERSAL THRESHOLD; WAVELET-BASED SIGNAL PROCESSING; WAVELETS;

EID: 80955141222     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WISP.2011.6051716     Document Type: Conference Paper
Times cited : (12)

References (17)
  • 2
    • 47049103557 scopus 로고    scopus 로고
    • Correcting sensor drift and intermittency faults with data fusion and automated learning
    • June
    • K. Goebel and W. Yan, "Correcting sensor drift and intermittency faults with data fusion and automated learning," IEEE Systems Journal, vol. 2, pp. 189-197, June 2008.
    • (2008) IEEE Systems Journal , vol.2 , pp. 189-197
    • Goebel, K.1    Yan, W.2
  • 3
    • 67349271585 scopus 로고    scopus 로고
    • Sensor validation and correction using auto-associative neural networks and principal component analysis
    • K. Worden, "Sensor validation and correction using auto-associative neural networks and principal component analysis," in Conference: 2003 IMAC-XXI: Conference & Exposition on Structural Dynamics, pp. 1-10, 2003.
    • (2003) Conference: 2003 IMAC-XXI: Conference & Exposition on Structural Dynamics , pp. 1-10
    • Worden, K.1
  • 5
    • 79959845186 scopus 로고    scopus 로고
    • Gas turbine sensor validation through classification with artificial neural networks
    • T. Palme, M. Fast, and M. Thern, "Gas turbine sensor validation through classification with artificial neural networks," Applied Energy, vol. 88, no. 11, pp. 3898-3904, 2011.
    • (2011) Applied Energy , vol.88 , Issue.11 , pp. 3898-3904
    • Palme, T.1    Fast, M.2    Thern, M.3
  • 6
    • 79551542555 scopus 로고    scopus 로고
    • Modeling, detection, and disambiguation of sensor faults for aerospace applications
    • October
    • E. Balaban, A. Saxena, P. Bansal, K. Goebel, and S. Curran, "Modeling, detection, and disambiguation of sensor faults for aerospace applications,"Sensors Journal, IEEE, vol. 9, pp. 1907-1917, October 2009.
    • (2009) Sensors Journal, IEEE , vol.9 , pp. 1907-1917
    • Balaban, E.1    Saxena, A.2    Bansal, P.3    Goebel, K.4    Curran, S.5
  • 7
    • 78649501104 scopus 로고    scopus 로고
    • Applications of wavelets in induction machine fault detection
    • August
    • E. Schmitt, P. Idowu, and A. Morales, "Applications of wavelets in induction machine fault detection," Ingeniare. Revista Chilena de Ingenieria, vol. 18, pp. 158-164, August 2010.
    • (2010) Ingeniare. Revista Chilena de Ingenieria , vol.18 , pp. 158-164
    • Schmitt, E.1    Idowu, P.2    Morales, A.3
  • 9
    • 33845429029 scopus 로고    scopus 로고
    • Wavelet methods for the detection of anomalies and their application to network traffic analysis
    • DOI 10.1002/qre.781
    • D. W. Kwon, K. Ko, M. Vannucci, A. L. N. Reddy, and S. Kim, "Wavelet methods for the detection of anomalies and their application to network traffic analysis," Quality and Reliability Engineering International, vol. 22, pp. 953-969, 2006. (Pubitemid 44892738)
    • (2006) Quality and Reliability Engineering International , vol.22 , Issue.8 , pp. 953-969
    • Kwon, D.W.1    Ko, K.2    Vannucci, M.3    Reddy, A.L.N.4    Kim, S.5
  • 10
    • 0000999642 scopus 로고
    • Jump and sharp cusp detection by wavelets
    • June
    • Y. Wang, "Jump and sharp cusp detection by wavelets," Biometrika, vol. 82, pp. 385-397, June 1995.
    • (1995) Biometrika , vol.82 , pp. 385-397
    • Wang, Y.1
  • 11
    • 79251592572 scopus 로고    scopus 로고
    • Fault detection and classification in power electronic circuits using wavelet transform and neural network
    • V. Prasannamoorthy and N. Devarajan, "Fault detection and classification in power electronic circuits using wavelet transform and neural network," Journal of Computer Science, vol. 7, no. 1, pp. 95-100, 2010.
    • (2010) Journal of Computer Science , vol.7 , Issue.1 , pp. 95-100
    • Prasannamoorthy, V.1    Devarajan, N.2
  • 12
    • 0035483115 scopus 로고    scopus 로고
    • A wavelet-based approach to abrupt fault detection and diagnosis of sensors
    • DOI 10.1109/19.963215, PII S0018945601087599
    • H. Q. Zhang and Y. Yan, "A wavelet-based approach to abrupt fault detection and diagnosis of sensors," IEEE Transactions on Instrumentation and Measurement, vol. 50, pp. 1389-1396, October 2001. (Pubitemid 33106008)
    • (2001) IEEE Transactions on Instrumentation and Measurement , vol.50 , Issue.5 , pp. 1389-1396
    • Zhang, J.Q.1    Yan, Y.2
  • 13
    • 0003986194 scopus 로고    scopus 로고
    • Multiresolution analysis and denoising of computer performance evaluation data with the wavelet transform
    • DOI 10.1016/1383-7621(96)00007-0, PII S138376210165607496000070
    • S. Papadimitriou and A. Bezerianos, "Multiresolution analysis and denoising of computer performance evaluation data with the wavelet transform," J. Syst. Archit., vol. 42, pp. 55-65, August 1996. (Pubitemid 126358829)
    • (1996) Journal of Systems Architecture , vol.42 , Issue.1 , pp. 55-65
    • Papadimitriou, S.1    Bezerianos, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.