메뉴 건너뛰기




Volumn 2, Issue 2, 2008, Pages 189-197

Correcting Sensor Drift and Intermittency Faults With Data Fusion and Automated Learning

Author keywords

Data fusion; drift fault; fuzzy fusion; intermittency; intermittent fault; sensor validation; soft fault

Indexed keywords

DETECTORS; FAULT DETECTION; FUZZY LOGIC; GENETIC ALGORITHMS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO); SENSORS;

EID: 47049103557     PISSN: 19328184     EISSN: 19379234     Source Type: Journal    
DOI: 10.1109/JSYST.2008.925262     Document Type: Article
Times cited : (42)

References (32)
  • 1
    • 0021468997 scopus 로고
    • Process fault detection based on modeling and estimation methods
    • R. Isermann, “Process fault detection based on modeling and estimation methods,” Automatica, vol. 20, no. 4, pp. 387–404, 1984.
    • (1984) Automatica , vol.20 , Issue.4 , pp. 387-404
    • Isermann, R.1
  • 5
    • 0035271909 scopus 로고    scopus 로고
    • Experimental application of extended Kalman filtering for sensor validation
    • Mar.
    • D. Gobbo, M. Napolitano, P. Famouri, and M. Innocenti, “Experimental application of extended Kalman filtering for sensor validation,” IEEE Trans. Control Syst. Technol., vol. 9, no. 2, pp. 376–380, Mar. 2001.
    • (2001) IEEE Trans. Control Syst. Technol. , vol.9 , Issue.2 , pp. 376-380
    • Gobbo, D.1    Napolitano, M.2    Famouri, P.3    Innocenti, M.4
  • 6
    • 0032166160 scopus 로고    scopus 로고
    • Kalman filters and neural network schemes for sensor validation in flight control systems
    • Sep.
    • M. Napolitano, D. Windon, J. Casanova, M. Innocenti, and G. Silvestri, “Kalman filters and neural network schemes for sensor validation in flight control systems,” IEEE Trans. Control Syst. Technol., vol. 6, no. 5, pp. 596–611, Sep. 1998.
    • (1998) IEEE Trans. Control Syst. Technol. , vol.6 , Issue.5 , pp. 596-611
    • Napolitano, M.1    Windon, D.2    Casanova, J.3    Innocenti, M.4    Silvestri, G.5
  • 8
    • 85008006130 scopus 로고    scopus 로고
    • Neural network-based sensor validation for turboshaft engines
    • J. C. Moller, J. S. Litt, and T. H. Guo, “Neural network-based sensor validation for turboshaft engines,” NASA TM-1998-208824, 1998.
    • (1998) NASA TM-1998-208824
    • Moller, J.C.1    Litt, J.S.2    Guo, T.H.3
  • 10
    • 11144299674 scopus 로고    scopus 로고
    • Enhanced auto-associative neural networks for sensor diagnostics (E-AANN)
    • Jul.
    • M. Najafi, C. Gulp, and R. Langari, “Enhanced auto-associative neural networks for sensor diagnostics (E-AANN),” in Proc. IEEE Int. Conf. Fuzzy Syst., Jul. 2004, vol. 1, pp. 453–456.
    • (2004) in Proc. IEEE Int. Conf. Fuzzy Syst. , vol.1 , pp. 453-456
    • Najafi, M.1    Gulp, C.2    Langari, R.3
  • 12
    • 0035505624 scopus 로고    scopus 로고
    • Real time intelligent sensor validation
    • Nov.
    • P. H. Ibarguengoytia, L. E. Sucar, and S. Vadera, “Real time intelligent sensor validation,” IEEE Trans. Power Syst., vol. 16, no. 4, pp. 770–775, Nov. 2001.
    • (2001) IEEE Trans. Power Syst. , vol.16 , Issue.4 , pp. 770-775
    • Ibarguengoytia, P.H.1    Sucar, L.E.2    Vadera, S.3
  • 13
    • 84901435105 scopus 로고    scopus 로고
    • Sensor validation and fusion using the nadaraya-watson statistical estimator
    • S. J. Wellington, J. K. Atkinso, and R. P. Sion, “Sensor validation and fusion using the nadaraya-watson statistical estimator,” in Proc. 5th Int. Conf. Inf. Fusion, vol. 1, pp. 321–326.
    • in Proc. 5th Int. Conf. Inf. Fusion , vol.1 , pp. 321-326
    • Wellington, S.J.1    Atkinso, J.K.2    Sion, R.P.3
  • 15
    • 0025421966 scopus 로고
    • Fault diagnosis in dynamic systems using analytical and knowledge based redundancy—A survey and some new results
    • P. M. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge based redundancy—A survey and some new results,” Automatica, vol. 26, pp. 459–70, 1990.
    • (1990) Automatica , vol.26 , pp. 459-470
    • Frank, P.M.1
  • 16
    • 0036860074 scopus 로고    scopus 로고
    • An algorithm for softfault diagnosis of linear and nonlinear circuits. circuits and systems I: Fundamental theory and applications
    • Nov.
    • M. Tadeusiewicz, S. Halgas, and M. Korzybski, “An algorithm for softfault diagnosis of linear and nonlinear circuits. circuits and systems I: Fundamental theory and applications,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 49, no. 11, pp. 1648–1653, Nov. 2002.
    • (2002) IEEE Trans. Circuits Syst. I: Reg. Papers , vol.49 , Issue.11 , pp. 1648-1653
    • Tadeusiewicz, M.1    Halgas, S.2    Korzybski, M.3
  • 17
    • 0036543675 scopus 로고    scopus 로고
    • Soft fault detection and isolation in analog circuits: Some results and a comparison between a fuzzy approach and radial basis function networks
    • Apr.
    • M. Catelani and A. Fort, “Soft fault detection and isolation in analog circuits: Some results and a comparison between a fuzzy approach and radial basis function networks,” IEEE Trans. Instrum. Meas., vol. 51, no. 2, pp. 196–202, Apr. 2002.
    • (2002) IEEE Trans. Instrum. Meas. , vol.51 , Issue.2 , pp. 196-202
    • Catelani, M.1    Fort, A.2
  • 18
    • 0027964139 scopus 로고
    • Multiple fault testing in analog circuits
    • Jan. 1994
    • N. B. Hamida and B. Kaminska, “Multiple fault testing in analog circuits,” in Proc. 7th Int. Conf. VLSI Des., Jan. 1994, pp. 1–66, 1994.
    • (1994) Proc. 7th Int. Conf. VLSI Des. , pp. 1-66
    • Hamida, N.B.1    Kaminska, B.2
  • 20
    • 0033327128 scopus 로고    scopus 로고
    • Ageneralized shiryayev sequential probability ratio test for change detection and isolation
    • D. P. Malladi, “Ageneralized shiryayev sequential probability ratio test for change detection and isolation,” IEEE Trans. Autom. Control., vol. 44, pp. 1522–1534, 1999.
    • (1999) IEEE Trans. Autom. Control. , vol.44 , pp. 1522-1534
    • Malladi, D.P.1
  • 21
    • 0016922921 scopus 로고
    • A generalized likelihood ratio approach to detection and estimation of jumps in linear systems
    • Feb.
    • A. S. Willsky and H. L. Jones, “A generalized likelihood ratio approach to detection and estimation of jumps in linear systems,” IEEE Trans. Automat. Control., vol. 21, no. 1, pp. 108–112, Feb. 1976.
    • (1976) IEEE Trans. Automat. Control. , vol.21 , Issue.1 , pp. 108-112
    • Willsky, A.S.1    Jones, H.L.2
  • 22
    • 26444613281 scopus 로고    scopus 로고
    • Change detection in time series data using wavelet footprints
    • M. Sharifzadeh, F. Azmoodeh, and C. Shahabi, “Change detection in time series data using wavelet footprints,” Adv. Spatial Temporal Databases, vol. 3633, pp. 127–144, 2005.
    • (2005) Adv. Spatial Temporal Databases , vol.3633 , pp. 127-144
    • Sharifzadeh, M.1    Azmoodeh, F.2    Shahabi, C.3
  • 23
    • 84944452417 scopus 로고
    • Outliers, level shifts and variance changes in time series
    • R. S. Tsay, “Outliers, level shifts and variance changes in time series,” J. Forcasting, vol. 7, pp. 1–20, 1988.
    • (1988) J. Forcasting , vol.7 , pp. 1-20
    • Tsay, R.S.1
  • 24
    • 0031250529 scopus 로고    scopus 로고
    • Neural networks for on-line parameter change detection in time series model
    • N. D. Ramirez-Beltran and J. A. Montes, “Neural networks for on-line parameter change detection in time series model,” Comput. Ind. Eng., vol. 33, pp. 337–340, 1997.
    • (1997) Comput. Ind. Eng. , vol.33 , pp. 337-340
    • Ramirez-Beltran, N.D.1    Montes, J.A.2
  • 25
    • 0028751188 scopus 로고
    • Anomaly detection by neural networks models and statistical timeseries analysis
    • Orlando, FL
    • R. Kozma, M. Kitamura, M. Sakuma, and Y. Yokoyam, “Anomaly detection by neural networks models and statistical timeseries analysis,” in Proc. Int. Joint Conf. Neural Netw., Orlando, FL, 1994, vol. 5, pp. 3207–3210.
    • (1994) Proc. Int. Joint Conf. Neural Netw. , vol.5 , pp. 3207-3210
    • Kozma, R.1    Kitamura, M.2    Sakuma, M.3    Yokoyam, Y.4
  • 26
    • 0035469838 scopus 로고    scopus 로고
    • Detection of change points in time series analysis with fuzzy statistics
    • Sep.
    • K. Kumar and B. Wu, “Detection of change points in time series analysis with fuzzy statistics,” Int. J. Syst. Sci., vol. 32, no. 9, pp. 1185–1192, Sep. 2001.
    • (2001) Int. J. Syst. Sci. , vol.32 , Issue.9 , pp. 1185-1192
    • Kumar, K.1    Wu, B.2
  • 27
    • 34548720320 scopus 로고    scopus 로고
    • Hybrid change detection for aircraft engine fault diagnostics
    • X. Hu, N. Eklund, K. Goebel, and W. Cheetham, “Hybrid change detection for aircraft engine fault diagnostics,” in Proc. IEEE Aerosp. Conf., 2007, pp. 1–10.
    • (2007) Proc. IEEE Aerosp. Conf. , pp. 1-10
    • Hu, X.1    Eklund, N.2    Goebel, K.3    Cheetham, W.4
  • 28
    • 0032626302 scopus 로고    scopus 로고
    • Fuzzy sensor fusion of gas turbine power plants
    • Sensor Fusion: Arch., Algorithms, Appl. III, Apr.
    • K. Goebel and A. Agogino, “Fuzzy sensor fusion of gas turbine power plants,” Proc. SPIE, Sensor Fusion: Arch., Algorithms, Appl. III, vol. 3719, pp. 52–61, Apr. 1999.
    • (1999) Proc. SPIE , vol.3719 , pp. 52-61
    • Goebel, K.1    Agogino, A.2
  • 29
    • 0002878527 scopus 로고    scopus 로고
    • An architecture for fuzzy sensor validation and fusion for vehicle following in automated highways
    • Dedicated Conf. Fuzzy Syst./Soft Comput. Autom. Transport. Ind., Florence, Italy
    • K. Goebel and A. Agogino, “An architecture for fuzzy sensor validation and fusion for vehicle following in automated highways,” in Proc. 29th Int. Symp. Autom. Technol. Autom. (ISATA), Dedicated Conf. Fuzzy Syst./Soft Comput. Autom. Transport. Ind., Florence, Italy, 1996, pp. 203–209.
    • (1996) Proc. 29th Int. Symp. Autom. Technol. Autom. (ISATA) , pp. 203-209
    • Goebel, K.1    Agogino, A.2
  • 30
    • 0004222346 scopus 로고    scopus 로고
    • Swarm Intelligence
    • San Mateo, CA: Morgan Kaufmann
    • J. Kennedy, R. Eberhart, and Y. H. Shi, Swarm Intelligence. San Mateo, CA: Morgan Kaufmann, 2001.
    • (2001)
    • Kennedy, J.1    Eberhart, R.2    Shi, Y.H.3
  • 32
    • 0003463297 scopus 로고
    • Adaptation in Natural and Artificial Systems
    • Ann Arbor, MI: Univ. of Michigan Press
    • J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univ. of Michigan Press, 1975.
    • (1975)
    • Holland, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.